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Abstract. Facial expressions are formed through complicated muscular
actions and can be taxonomized using the Facial Action Coding Sys-
tem (FACS). FACS breaks down human facial expressions into discreet
action units (AUs) and often combines them together to form more elab-
orate expressions. In this paper, we present a comparative analysis of
performance of automated facial expression recognition from thermal fa-
cial videos, visual facial videos, and their fusion. The feature extraction
process consists of first placing regions of interest (ROIs) at 13 fiducial
regions on the face that are critical for evaluating all action units, then
extracting mean value in each of the ROIs, and finally applying principal
component analysis (PCA) to extract the deviation from neutral expres-
sion at each of the corresponding ROIs. To classify facial expressions, we
train a feed-forward multilayer perceptron with the standard deviation
expression profiles obtained from the feature extraction stage. Our exper-
imental results depicts that the thermal imaging modality outperforms
visual modality, and hence overcomes some of the shortcomings usually
noticed in the visual domain due to illumination and skin complexion
variations. We have also shown that the decision level fusion of thermal
and visual expression classification algorithms gives better results than
either of the individual modalities.

1 Introduction

The detection and recognition of human facial expressions is a challenging task.
Among different individuals the geometry, size, and color of the face vary greatly.
Furthermore, a single expression can be formed at many different intensities and
speeds, sometimes so subtle that it goes unnoticed to a human observer. This
intense variance compounded with the subtlety of expressions necessitates more
detailed and automated approaches to facial expression detection.

Visual cameras are most commonly used to capture facial data due to their
low cost and ubiquitous availability. Several automated facial expression recog-
nition algorithms were proposed in the recent years from visual imagery [1], [2],
[3]. Bartlett et. al reported 93% accuracy of automated facial recognition on
the Cohn-Kanade expression dataset [4], and recently Kotsia and Pitas reported
classification accuracy of 99.7% and 95.1% on the same dataset [5]. Visual ap-
proaches, while shown to be quite effective on particular databases, have a few
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unaddressed obstacles. A major drawback is their tendency to lose accuracy
when classifying subjects of darker skin tones. The OpenCV face detection sys-
tem, which has become a basis for comparison shows a significant disparity in
the accuracy of classifying dark- versus light-skinned subjects [6]. Furthermore,
many databases used to test visual-based expression recognition systems have a
narrow variety of positions, textures, and intensities of light. This usually simpli-
fies the task of classification and result in higher accuracy measurements. Hence
visual approaches tend to perform well under sterile lab conditions, but under
varied light conditions they may operate at lower accuracies [6].

Thermal imaging is a well known alternative to visual imagery because of
its illumination invariance [7]. A thermal camera measures the radiations emit-
ted from the surface of the skin, which is a result of heat dissipation from core
body due to blood flow, metabolic activities, subcutaneous tissue structure and
the sympathetic nervous activities. Though study has been done in the area
of thermal face recognition [8], few have attempted to explore facial expression
recognition using this modality. Khan et al. explored and proved through statis-
tical analysis the feasibility of automated facial expression classification through
thermal imaging [9]. Yoshitomi et al. reported success rates of 90% [10]. An un-
supervised local and global feature localization algorithm for facial expression
classification was proposed by Trujilo [11].

Despite solving the illumination problem encountered in visual imagery, ther-
mal imaging poses a major challenge as facial thermograms may change de-
pending on ambient temperature and the physical condition of the subject. This
renders difficult the task of acquiring similar features for the same expressions.
Past studies in face recognition noticed that the thermal face recognition perfor-
mance deteriorates over time [12], posing a necessity to perform similar studies
for automated facial expression recognition. In this paper, we collected simulta-
neous visual and thermal data during both ideal and challenging conditions, and
further present comparative results from both modalities as well as their fusion.
To the best of our knowledge, this is the first time such comparative study is
being reported.

FACS, developed by psychologists Ekman and Friesen [13], is most commonly
used to classify human facial expressions through analysis of possible contor-
tions of facial geometry. FACS breaks down the development of expressions into
particular action units, each of which is derived from a muscle or muscle group
in the head. In this paper, we present a feature extraction and classification al-
gorithm for a total of 8 action units (AU 1+2, 4, 6+12, 9, 10, 12, 15, 17). We
selected these specific action units because they are the exemplary when forming
any of the 6 universal emotions: surprise (AU1+2), fear (AU4), sadness (AU15),
disgust (AU9, AU10), anger (AU4) and happiness (AU6+12, AU12) [14].

2 Methodology

Our automated facial expression recognition algorithm mainly contains three
steps - face acquisition, facial feature extraction, and expression classification.
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In this section, we will explain in detail our experimental setup to collect simul-
taneous visual and thermal facial data, local facial feature extraction algorithm,
and expression classification methods.

2.1 Experimental Setup

A snapshot of our experimental setup can be seen in the figure 1. A total of 8
subjects participated in our experiments with age range from 20 to 30 years,
both genders, and varying ethnicities. To facilitate comparison, we collected
simultaneous data from both midwave thermal infrared and a monochrome CCD
visual cameras as shown in figure 1. The room is equipped with low, medium, and
high intensity fluorescent lighting to simulate the effect of illumination variation
on visual imagery. We used a portable heater fan to simulate the effect of variable
atmospheric air conditions on thermal imagery. The subjects were instructed to
rinse their face and apply a small amount of 70% isopropyl alcohol. In order
to ensure that the evaporation of the volatile alcohol mixture did not adversely
affect the data, each subject waited a mandatory period of 15 minutes before
beginning the data collection. A FACS encoder trained each subject regarding
the facial expressions they were supposed to make during the data collection by
showing them the videos of each expression. Each subject was allowed as much
time as they needed to practice each expression, and they also have an option
to skip any expression if they so desired. For each subject, we first record their
relaxed and neutral expression for 25 seconds, followed by a visual instruction
on a screen in front of them regarding the next expression they are supposed
to make. The subjects were asked to repeat each expression 14 times at any
intensity of their choice in order to simulate the variety of natural expression in
everyday formulation.

Fig. 1. The experimental setup used to simultaneously collect thermal and visual facial
data from subjects
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2.2 Local Feature Extraction

The typical feature extraction algorithms in automated facial expression recog-
nition can be categorized as holistic (where the face is processed as a whole), and
local (where only facial features or areas that are prone to change with facial
expressions are processed) [1]. Our feature extraction algorithm falls in the latter
category with regions of interest (ROIs) placed at 13 fudicial points on the face
(as shown in figure 2). The ROIs are carefully chosen according to various facial
muscles involved in different FACS action units as explained below:

Fig. 2. The 13 regions of interest used to capture facial movement and deformation

ROIs 1 and 2: measures contraction of the frontalis muscles which raise the
eyebrows. The raising of the eyebrows, present in FACS action units 1 and 2, are
most common associated with expressions of surprise. The vertical placement of
ROIs 1 and 2 distinguish between action unit combination 1+2 and 4. Action
unit 4 affects mostly ROI 2 because the skin is only slightly stretched on the
forehead, producing lower values in ROI 1.

ROI 3: captures the translation of the tissue actuated by the corrugator and
procerus muscles. These muscles are used to furrow the brow, action unit 4,
when one is angry or sad. This ROI detects both the translation of the eyebrow
and the deformation in the skin in between the eyebrows generate signal.

ROIs 4 and 5: detects the orbicularis oculi. These are used to detect action
unit 6, the critical difference between a Duchenne smile (AU 6 and 12) and a
simple smile (AU 6). These ROIs detect the subtle raising of upper-cheek tissue
and the wrinkling of the outer eye-edge.

ROI 6: measures the quadratus labii superioris which is responsible for
scrunching the nose tissue. This is most commonly formed when a person is
disgusted at something.

ROIs 7 and 8: additional measures to detect the lower set of elevator muscles,
used to raise the tissue surrounding the nose. These attempt to measure action



A Comparative Analysis of Thermal and Visual Modalities 55

unit 10, a secondary expression of disgust. These measure the translation of new
tissue from around the nose, just above the periorbital region.

ROIs 9 and 10: detects the contraction of the zygomaticus muscles, used
most strongly in smiles. These measure action unit 12, the widening of the lips.
These detect specifically the translation of cheek tissue as well as the crease
formed at the edges of the mouth during a smile.

ROIs 11 and 12: measures the contraction of the triangularis, which low-
ers the other edges of the mouth into a frown. Action unit 15 is necessary for
expressing sadness. These two ROIs measure both tissue translation and crease
formation around the bottom edges of the mouth.

ROI 13: measures the change in the tissue attached to the mentalis. This
allows for the measurement of any chin flexion, especially used to raise the
lower lip.

The thermal and visual facial videos were recorded at 25 and 30 fps respec-
tively. We computed the neutral ROIs by computing the mean values in each
ROI from first 25 seconds of the video, when the subjects made neutral expres-
sion. Then the principal components were computed for each ROI by treating
each pixel within the ROI as a variable. The frames corresponding to greatest
change from the neutral ROI will have the largest principal component values
during the expression as depicted in figure 3.
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Fig. 3. PCA values from ROIs 3 and 9 while the subject is making (a) angry expression,
AU 4 (Brow lowerer) and (b) happy expression, AU12 (Lip corner puller). It can be
clearly seen that PCA values for ROI 3 has large values during angry expression, while
it has large values for ROI 9 during happy expression.

After the principal components have been found for all ROIs, a profile for
each expression is determined by computing the standard deviation of each ROI-
principal component. To do this, we first annotate the onset (marking the start)
and offset (marking the end) frames for each expression as shown in figure 3. The
standard deviation expression profiles are generated by computing the standard
deviation of each of the 13 ROIs during the window between the onset and offset.
These expression profiles denote the amount of deviation found over the course
of the expression, and hence are used to train the classifier.
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2.3 Classification

The standard deviation expression profiles computed in the feature extraction
step are used to train feed-forward multilayer perceptrons [15] for both visual
and thermal modalities. Each multilayer perceptron utilizes 14 input nodes, 10
sigmoid nodes in the hidden layer and 8 output nodes to classify expressions.
Thermal and visual perceptron classifiers were generated separately by training
them with expressions that were coded by a certified FACs encoder to determine
a ground truth. In order to study the effect of fusion of thermal and visual modal-
ities, we use a simple decision level fusion scheme, where for each test expression,
the result from the perceptron with maximum confidence is considered.

3 Experimental Results and Discussion

In order to test the performance of each of the thermal and visual modalities
during both ideal and challenging conditions, each subject was asked to partic-
ipate in two sessions - Phase I and Phase II. In this section, we will present
results from each of these sessions.

Fig. 4. (a) A sample from Phase I (illumination variance) dataset. The top row shows
the thermal and visual images acquired from a subject under bright lighting, middle
row shows corresponding images from another subject acquired under low lighting.
(b) A sample from Phase II (temperature variance) dataset. The top row shows the
thermal and visual images acquired while warm air is blown under high setting, middle
row shows corresponding images from another subject while air is blown under low
setting. The bottom row shows the color map used for thermal images.

3.1 Phase I Experiments - Illumination Variance

In the first session (Phase I), we introduced variability in visual imagery by us-
ing different lighting (low, medium, and high intensity) in the room for different
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subjects during the data collection. This resulted in a considerable variability
in visual imagery (as shown in figure 4a) and hence posed a challenging con-
dition for the visual perceptron classifier. However, the room temperature was
maintained constant throughout the session, maintaining an ideal condition for
thermal imagery. The Phase I dataset consisted of a total of 448 expressions
from each of the thermal and visual modalities.

We used 10-fold cross validation and percentage split in order to test the clas-
sification accuracy. Table 1(left) shows the confusion matrix and Table 2 shows
the accuracy for all the test action units from thermal and visual modalities, as
well as their decision-level fusion. As we expected, thermal modality performed
better than visual modality because visual imagery is affected by the illumi-
nation variance introduced in the dataset. However, the decision-level fusion of
thermal and visual perceptron classifiers performed better than either of them.

3.2 Phase II Experiments - Temperature Variance

In the second session (Phase II), we introduced variability in thermal imagery
by blowing a heater fan (at different speeds of low, medium, and high), affecting
the subject’s thermal signature. This introduced a considerable variability in
thermal imagery (as shown in figure 4b), posing challenging conditions for the
thermal perceptron classifier. However, the lighting in the room was maintained
constant throughout the session — an ideal condition for visual imagery. The
Phase II dataset consisted of a total of 448 expressions from each of the thermal
and visual modalities.

Table 1 (right) shows the confusion matrix and Table 2 shows the accuracy
for all the test action units from thermal and visual modalities, as well as their
decision-level fusion. As we expected, the visual modality has better results in
Phase II than in Phase I, since constant lighting is maintained during the data
collection. However, an interesting observation is that despite the temperature
variance introduced in the dataset, thermal modality remains unaffected in Phase
II and has almost similar performance to that in Phase I. Also, the decision-level
fusion of thermal and visual perceptron classifiers again performed better than
either of them.

As explained in section 2.2, the features fed to the classifiers are the prin-
cipal components computed in each of the ROIs, which actually measures the
change from neutral ROI during the expression. In the visual imagery much of
this change is a result of the formation of shadows on portions of face depending
on the particular expression being made. It is possible that no new shadows are
formed in the case of planar deformations or poor lighting. This is the reason why
the classifier performance was poor on Phase I dataset where different lighting
conditions were used during data collection. The thermal data however captures
not only the translation, but also the deformation of the tissue due to the unique
heat patterns generated on face during the expression. These deformations in-
troduce variability that can always be measured by principal components. Hence
the classifier performance was same on both Phase I and Phase II datasets, even
though considerable variability was introduced on the thermal data in Phase II
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Table 1. Confusion matrices of Phase I (illumination variance) and Phase II (tem-
perature variance) experiments; for thermal and visual modalities, and their fusion

Test Phase I Phase II
AUs Classified AUs Classified AUs

1+2 4 6+12 9 10 12 15 17 1+2 4 6+12 9 10 12 15 17

1
+
2 T 96 2 0 2 0 0 0 0 100 0 0 0 0 0 0 0

V 92 4 0 2 0 0 0 2 98 0 0 0 0 0 2 0
F 96 2 0 2 0 0 0 0 100 0 0 0 0 0 0 0

4

T 2 98 0 0 0 0 0 0 0 97 0 0 0 0 3 0
V 8 86 0 6 0 0 0 0 0 100 0 0 0 0 0 0
F 2 98 0 0 0 0 0 0 0 100 0 0 0 0 0 0

6
+
1
2 T 0 0 98 0 2 0 0 0 0 0 97 0 0 3 0 0

V 0 0 72 0 10 12 2 4 0 0 97 0 0 3 0 0
F 0 0 98 0 0 0 0 2 0 0 97 0 0 3 0 0

9

T 0 2 0 92 2 2 0 2 0 0 0 100 0 0 0 0
V 2 2 0 96 0 0 0 0 0 0 2 98 0 0 0 0
F 0 0 0 98 0 0 0 2 0 0 0 100 0 0 0 0

1
0

T 0 0 2 0 96 0 2 0 0 0 0 0 100 0 0 0
V 0 0 0 4 96 0 0 0 0 0 0 0 100 0 0 0
F 0 0 0 0 100 0 0 0 0 0 0 0 100 0 0 0

1
2

T 0 0 6 0 2 90 0 2 2 0 6 0 0 82 8 4
V 0 0 8 0 0 92 0 0 4 0 2 0 0 88 6 0
F 0 0 4 0 0 94 0 2 2 0 0 0 0 94 4 0

1
5

T 0 5 0 0 3 3 90 0 0 0 3 0 0 5 90 3
V 0 0 0 0 0 0 90 10 0 0 0 0 0 15 82 3
F 0 0 0 0 0 0 95 5 0 0 0 0 0 8 92 0

1
7

T 0 0 2 0 0 0 2 96 0 0 2 0 0 0 0 98
V 4 0 0 0 2 5 5 84 0 0 0 0 0 0 0 100
F 2 0 0 0 2 0 0 96 0 0 0 0 0 0 0 100

Table 2. Accuracy of Phase I (illumination variance) and Phase II (temperature vari-
ance) experiments for thermal and visual modalities, and their fusion

Thermal Visual Fusion

Phase I Accuracy 94.81% 88.64% 97.03%

Phase II Accuracy 94.6% 94.6% 98.01%

by using a heater fan. As one would expect, the fusion of the two modalities
always performed better than either of the individual modalities.

There are a few challenges in classification of certain action units that were
noticed in both modalities. The largest type of misclassification in the thermal
domain is between action units 1+2 and 4. This error is caused largely by low
intensity action unit 1+2, which develops a weak signal in the topmost ROI 1,
which mostly resembles the low signal generated by action unit 4, and hence
confuses the perceptron classifier. Hence in these cases the perceptron mis-
classified the lower signal action unit 1+2 as action unit 4. Similarly there is
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considerable misclassification between action units 1+2 and 4 in the visual ap-
proach, although the reason is slightly different. Medium to strong contraction
of the frontalis (au1+2) creates wrinkles on the forehead, which casts shadows
and in turn affects the PCA output. In a few instances the intensity was so low
that very few shadows were generated, and therefore it was classified as action
unit 4.

The second largest source of misclassification in both modalities is between
action unit 12 and 15. Au 12 pulls the corner of the lips back and upwards
(obliquely) creating a wide U shape to the mouth while au 15, the lip corner
depressor pulls the lip corners down. Both of these action units produce strong
signals in the ROIs placed in the buccal region (ROIs 9, 10, 11 and 12 ), which
in turn confuses the perceptron classifier in some cases, and hence leads to mis-
classification.

The third largest source of misclassification in thermal is between action unit
combination 6+12 and 12. This error is caused when the two ROIs measuring
the orbicularis oculi do not detect the subtle deformation of the skin around the
eye socket.

4 Conclusion

The visual approach has long been considered the most powerful approach to
facial expression recognition. We have shown through pilot experiments that the
thermal modality can be an alternative or a strong addition to visual modality
that can overcome some of its shortcomings, such as illumination dependency.
We have collected two sessions of simultaneous thermal and visual facial ex-
pression datasets, with each session comprising a challenging variability in each
modality. We noticed that the visual modality has best performance when the
lighting conditions are kept constant, but the performance degraded consider-
ably when illumination variance was introduced in the dataset. However, the
thermal modality performed equally well even in the presence of heat variabil-
ity in the dataset. The decision-level fusion of thermal and visual modalities
performed better than either of the individual modalities. To the best of our
knowledge this is the first comparative study between the two modalities for au-
tomated facial expression recognition. As a future work, we plan to extend the
dataset considerably, and also investigate more sophisticated fusion techniques
for thermal and visual modalities.
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