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ABSTRACT
Scale-free networks have received much attention in recent
years due to their prevalence in many important applications
such as social networks, biological systems, and the Internet.
We consider the use of conservative parallel discrete event
simulation techniques in network simulation applications in-
volving scale-free networks. An analytical model is devel-
oped to study the parallelism available in simulations us-
ing a conservative time window synchronization algorithm.
The performance of scale-free network simulations using two
variants of the Chandy/Misra/Bryant synchronization algo-
rithm are evaluated. These results demonstrate the impor-
tance of topology in the performance of synchronization pro-
tocols when developing parallel discrete event simulations
involving scale-free networks, and highlight important chal-
lenges such as performance bottlenecks that must be ad-
dressed to achieve efficient parallel execution. These results
suggest that new approaches to parallel simulation of scale-
free networks may offer significant benefit.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Model-
ing

Keywords
conservative synchronization; discrete event simulation; par-
allelism; power law degree distribution; scale-free; scale-free
degree distribution; scale-free network simulation; simula-
tion synchronization

1. INTRODUCTION
Parallel discrete event simulation (PDES) offers a means

to accelerate, and/or enable large-scale simulations by dis-
tributing the execution of a simulation program over multi-
ple processors. It has been applied to a wide variety of appli-
cations such as simulating telecommunication networks [24],
surface and air transportation systems [29, 31], and disease
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spread [23], to mention a few. A PDES program consists of
a collection of logical processes (LPs) that communicate by
exchanging timestamped messages, or events.

A synchronization mechanism is needed to ensure the par-
allel execution of the simulation produces exactly the same
results as the corresponding sequential execution. Synchro-
nization algorithms are broadly classified as conservative
mechanisms that rely on blocking logical processes in or-
der to ensure events within each LP are always processed in
non-decreasing timestamp order, and optimistic algorithms
that allow out-of-order event processing to occur, but utilize
a rollback mechanism to recover when events have not been
processed in timestamp order. A critical factor impacting
parallel performance is the amount of overhead, e.g., addi-
tional messages or rolled back computation, that must be
introduced by the synchronization mechanism. Managing
this overhead is critical to achieving efficient executions.

The PDES topology is a graph with each node represent-
ing an LP, and each link connecting two LPs indicating those
LPs may communicate by sending a message between them.
Here, we assume undirected arcs, and do not distinguish be-
tween the sending and receiving LP except to clarify the
presentation.

We are concerned with one important class of network
topologies that have become known as scale-free networks
[4]. A scale-free network is one where the node degree fol-
lows a power law distribution. A distinguishing character-
istic of scale-free networks is a significant number of nodes
referred to as hub nodes contain a large node degree, while
most nodes, often referred to as leaf nodes, contain rela-
tively small degree. Scale-free networks are known to ex-
hibit “small world” properties, meaning, the minimum path
length between any pair of nodes in the network is small
relative to the number of nodes in the network. As will be
seen later, these properties have important ramifications for
parallel discrete event simulation.

Scale-free networks have received a considerable amount
of attention in recent years because it has been observed that
many real-world systems contain networks that exhibit the
scale-free property [30]. For example, it is widely believed
that the autonomous system (AS) level topology of the Inter-
net is scale-free [11, 25, 13, 33]. In the broad area of systems
biology, the study of complex biological systems, protein-
protein interaction networks have been demonstrated to fol-
low scale-free distributions [16]. Some financial networks
such as the interbank payment network exhibit scale-free
behavior [27] Social networks, the world-wide-web, the in-
ternal structuring of superconductors, the airline transporta-
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tion network, and human interaction networks such as those
characterizing the spread of diseases have been observed to
exhibit the scale-free property.

Other networks, while not following a power-law distri-
bution, do appear to have heavy skew in their node degree
distribution. For example, initial studies suggested that the
router-level topology of the Internet followed a power law,
but more recent work reports the topology is driven by engi-
neering and economic considerations as well as physical node
and link capacity constraints, resulting in a node degree dis-
tribution that is skewed, but does not follow a power law
[32]. The router-level topology contains many high-degree
routers at the edge of the network designed to aggregate
traffic from many low-bandwidth connections coupled with
a mesh-like core of high capacity routers with a smaller num-
ber of high bandwidth links. Although the work described
here focuses on networks with a power law degree distri-
bution, we conjecture that many of the results derived in
this study also have applicability to networks with heavily
skewed degree distribution.

We are concerned with the efficiency of parallel simula-
tion techniques in terms of parallelism and overhead of syn-
chronization protocols for scale-free networks. It seems clear
that topology will have strong implications regarding perfor-
mance. For example, it has been observed empirically that
the distribution of event-level parallelism in simulations of
communication networks can lead to severe load imbalances
[19]. In [9] load distribution issues in scale-free network sim-
ulations are examined. However, to our knowledge, the rela-
tionship between power law topology and parallel simulator
performance has not been previously studied at a founda-
tional level.

The remainder of this paper is organized as follows. The
next section describes qualitatively the relationship between
scale-free network topologies and overhead of PDES syn-
chronization protocols. While an exhaustive examination
of all synchronization protocols is beyond the scope of this
work, this section discusses examples from major classes of
synchronization protocols. Section 3 reviews the power law
degree distribution that characterizes scale-free networks.
Section 4 develops an analytical model to assess the par-
allelism available in parallel simulations of scale-free net-
works using a simple, synchronous window-based PDES pro-
tocol. This is followed by results from simulation studies
that consider parallelism and overhead using two variations
of the well-known Chandy/Misra/Bryant protocol. Finally
we present conclusions and areas of future research.

2. PDES SYNCHRONIZATION
Most PDES synchronization protocols were designed to be

used to simulate networks of arbitrary topology. One excep-
tion is the protocol described in [17], that was designed for
feedforward networks. Conservative synchronization algo-
rithms broadly fall into two general categories. Synchronous
algorithms utilize global synchronization points, e.g., barri-
ers, to synchronize the computation. By contrast, asyn-
chronous algorithms use only local synchronization mecha-
nisms. One well-known example of the latter is the Chandy-
Misra-Bryant (CMB) [6] algorithm.

Briefly, CMB sends a null message to another LP to in-
dicate a lower bound on the timestamp of any message it
might send in the future. The receiver uses this information
to determine a lower bound on the time stamp (LBTS) of

all future messages it might receive. Events with timestamp
smaller than this LBTS value may be safely processed. In
its simplest form, each LP broadcasts a null message on each
of its outgoing links after processing each event. We refer to
this approach as näıve CMB.

The number of links connected to an LP, i.e., the node de-
gree, impacts the performance of the algorithm in two ways.
First, an updated LBTS must be computed by each LP.
In the worst case the number of comparisons is O(logNL),
where NL is the node degree of LP L. This calculation takes
little time, but must be repeated often, as much as once for
each received message. More importantly, however, an LP
must send a null message to each of its neighbors, as often as
after each message that it processes. This overhead is clearly
proportional to node degree. This overhead is problematic
for scale-free networks because high degree nodes will in-
cur a significant overhead to send, receive, and process null
messages. As will be seen later, hub nodes tend to have a
disproportionately large amount of event computation that
can cause them to become bottlenecks. The aforementioned
overheads clearly aggravate this situation.

An alternative version of CMB uses a demand-driven ap-
proach [28]. Rather than broadcasting a null message at each
message send, an LP L requests a null message from each
LP when it must block to wait on an empty message queue.
This will significantly reduce the number of null messages
that are required. However, even with this optimization,
one would expect the hub nodes to have to request more
null messages than leaf nodes due to the large number of
incoming links. Later, we use simulations to evaluate this
question further.

Synchronous algorithms typically repeat the following steps:
(1) compute LBTS values to determine which events are
safe to process, (2) process those events with timestamp less
than the LP’s LBTS value and send any messages produced
in processing these messages, (3) perform a barrier synchro-
nization. Each iteration through these steps is referred to
as an epoch. One of the simplest algorithms is YAWNS [22]
that completes the first step by computing a global mini-
mum that specifies the smallest timestamped message that
could be generated, and uses this value as the LBTS. The
performance of the YAWNS protocol for scale-free networks
will be examined in much greater detail later.

Other synchronous algorithms put greater effort into com-
puting the LBTS values. A common approach is to use
the distance between objects [3] to determine the minimum
amount of simulation time that must elapse for an event in
one LP to affect an event in a different LP. To accomplish
this, an LP must consider the smallest timestamp event
within each other LP, and use the precomputed distance
to compute an LP’s LBTS value. This may require exam-
ining many other LPs to determine which events are safe.
The bounded lag approach uses a simulation time window to
limit the scope of this search, thereby arguing that the pro-
tocol scales to large numbers of processors [20]. The events
within the window are considered near future events while
those outside the window are considered far future events.
The width of the window is important to ensure runtime
efficiency; too small a window and the LP’s won’t be able
to process very many events per epoch. Too large a window
and the events that should be far future are included in the
the calculations, again decreasing the runtime efficiency of
the simulation.
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Scale-free networks are a challenging test case for these
synchronization algorithms. This is because scale-free net-
works possess the so-called small world property. Popular-
ized in the media, small world networks have the property
that the average minimum path length between two ran-
domly selected nodes in the network tends to be very small,
even for networks containing a large number of nodes. As
discussed momentarily, power law distributio‘ns are charac-
terized by the parameter λ that determines the number of
high degree nodes that will occur. In cases with 2 ≤ λ ≤ 3,
a common range for natural scale-free networks, the average
path length grows even slower (log logN) [8]. Stated another
way, the number of nodes (LPs) reachable from a given node
increases exponentially with the number of hops. This sug-
gests that algorithms that require examination of other LPs
to determine what events are safe to process are doomed to
failure because a very large number of nodes will have to
be examined to determine what events are safe. Windowing
schemes such as that used in bounded lag are unlikely to
solve this problem because the relevant “neighborhood” of
nodes that must be examined grows too rapidly.

Network topology may also impact the performance of op-
timistic synchronization algorithms [5]. Approaches such as
the well-known Time Warp algorithm [15] utilize a rollback
propagation mechanism that can severely degrade perfor-
mance. Analysis of time warp systems has been carefully
studied through a number of different approaches. Over-
all parallel performance bounds have been studied through
modeling the critical path within simulations [18]. The gen-
eral performance of time warp systems has also been rigor-
ously investigated assuming a fully connected network topol-
ogy [14, 1]. The propagation of rollbacks through the net-
work is dependent on network topology; however, the rela-
tionship of the rollback propagation mechanism to topology
is complex, and not well understood. Our focus here is to
explore parallelism in scale-free network simulations and to
elucidate the behavior of conservative synchronization ap-
proaches on scale-free topologies. Here, we focus exclusively
on conservative synchronization algorithms.

3. SCALE-FREE NETWORKS
For the examination of scale-free networks it is generally

assumed that the node degree probability is [7]:

P (k) ∼ ck−λ

Where k is the node degree, c is a scalar normalization con-
stant, and λ is a parameter. Intuitively, smaller values of
λ indicate the network will contain more nodes with large
degree. Typical values of λ for networks that appear in
practice generally fall in the range λ ∈ (1, 3] [4, 7]. Early
investigations of natural systems by Italian economist Vil-
fredo Pareto found that many observable phenomena follow
a Pareto distribution [2].

The Pareto cumulative distribution function follows:

F (x) =

{
1−

(
m
x

)α
for x ≥ m,

0 for x < m

where m is the positive, minimum degree across all vertices
in the network. The Pareto distribution is a reformation of
the general power-law distribution shown above:(m

x

)α
= mα

(
1

x

)α
= mα (x)−α

In this case c = m and α = λ. This leads to to the proba-
bility mass function:

F (x)′ = f(x) =

{
α
(
mα

xα+1

)
for x ≥ m,

0 for x < m

From this the expectation can be formulated:

E(X) =

∫
xfX(x)dx =

αm

α− 1
, for α > 1

These definitions will be called upon later during the anal-
ysis of scale-free network behavior to yield quantitative in-
formation about the network.

4. CONSERVATIVE PDES ANALYSIS

4.1 Application Model and Execution
We have developed a general model of synchronous sim-

ulation using the YAWNs protocol described earlier. The
system utilizes an event processing paradigm based on the
well-known PHOLD model [12] adapted for scale-free net-
works. The system initially contains a fixed set of messages
that are uniformly distributed across all LPs in the system.
When an event is processed, exactly one new event is created
and sent to a destination LP that is chosen at random from a
uniform distribution among the LP’s neighboring nodes. We
assume each LP has a lookahead of L, and the timestamp
increment for each newly created event is L plus a value
drawn from an exponential distribution. We assume each
LP is mapped to a separate processor. It is assumed that
each event requires one unit of wall clock time to process
that event.

In the synchronous YAWNS protocol a fixed sized window
is used whose size is equal to the lookahead L of each LP.
All events with timestamp in the window [Min,Min + L)
are processed in each epoch, where Min is the minimum
timestamp event among those that have not yet been pro-
cessed. We assume the time to compute LBTS values and
communication overheads, e.g., to send and receive events,
are negligible, and event computations are not preempted
once the processing of an event begins. Therefore, the time
to complete an epoch is proportional to the maximum num-
ber of events among the LPs whose timestamp reside within
the current window.

4.2 Analytical Model
The main goal of the analytical model is to analyze the

affects of the underlying topology on the amount of paral-
lelism in the simulation. To aid this investigation we created
a stochastic analytical model to estimate the steady state ar-
rival of events within an epoch of width L. In window-based
synchronous approaches, the LP with the longest runtime
will become the bottleneck. When the number of events
within each time window among the different LPs vary widely,
the underutilized LPs will become idle, waiting for the LP
containing the largest number of events. This results in
a loss of parallelism and reduces the efficiency of the dis-
tributed simulation. In order to empirically measure the
parallelism in the model, our approach calculates the avail-
able parallelism as follows: Let the number of events per
LPi for a single epoch be ni. The bottleneck LP, or longest
running LP in wallclock time, (LP-4 in fig. 1) is:

arg max{ni}
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Since the processing time of each event is 1 unit of wallclock
time, the amount of time to complete the epoch is emax (see
fig. 1) where:

emax = max{ni}

The total amount of work, i.e., the number of events within
the epoch is W (represented as the events inside the shaded
region) can then be calculated:

W =
∑
i

ni

The amount of parallelism, P , is:

P =
W

emax

In other words, P is the maximum speedup that can be
obtained by a parallel execution of the simulation.

Figure 1: The measure of parallelism, P , is based on
the LP with the largest number of events and the
total amount of time spent processing events in the
epoch. In this example the shaded region denotes a
single epoch with 7 LPs. LP-4 determines the value
of emax = 7 and the total number of events W = 24 is
the number of events in the shaded region.

The exact arrival time distribution for a message is com-
plex, so we have adopted a number of approximations and
simplifications for its form. Many of the approximations are
common when attempting to analytically model a simula-
tion system [10, 22]. Numerical sample estimates can then
be computed for each of the parameters. This is predicated
on the notion that the arrival time, t, of a particular event
can be viewed as the sum of some number of past service
events. This analysis is novel in that it considers the effect
of a scale-free or power-law degree distribution within the
simulation network topology. In the following analysis we
taxonomize nodes in the simulation network as either “leaf”
or“hub”nodes. Leaf nodes are nodes of relatively low degree
while the hub nodes are those of high degree. Let the top f
fraction of nodes be hubs while the remaining 1− f fraction
of nodes are leaves.

With the message arrival times following an approximate
distributional form, it is possible to compute a new proba-
bility distribution of the number of events executed within
a known period of simulation time. Similar to Dickens et
al. the analysis presented in this work focuses on epochs

or generations of messages across a known period of simu-
lation time [10]. Each generation is a window of simulation
time [t, t + L). All events with timestamp et ∈ [t, t + L)
are considered to be members of that generation. As events
are processed within the first generation some number of the
new events will fall within the next or subsequent genera-
tions and are not counted among the events in the current
generation.

The number of service events that an LP starts in [t, t+L)
is a random variable eserv that follows a Poisson distribution
with mean determined by the previous epoch. Because the
routing of an event in a scale-free network is not uniform,
the number of job arrival events is a random variable J ,
conditioned on the type of node, i.e., hub or leaf.

Given N messages at generation k the number arriving
at an LP is a binomial distribution conditioned on the node
type. Because the connectivity between nodes is by defi-
nition not uniform, this conditioning is used to model the
average case hub and leaf nodes. Let ui and vi be the num-
ber of events at a hub and leaf at generation i respectively.
The values Vh and Vl are the expected number of edges for
each type of node. The resulting binomial for hubs is then
B(ui, 1/Vh) and B(vi, 1/Vl) for leaves. Because the hubs
are picked as some fraction, f , of the most highly connected
nodes, there exists a well defined point xf after which lies a
fraction f of the measurements.∫ ∞

xf

cx−λ dx = f

∫ ∞
xmin

cx−λ dx

Given λ > 1, xf exists and can be solved for; yielding:

xf =

(
1

f

)1/λ−1

xmin.

With the boundary point xf , it is possible to separately
calculate the expected degree in the points up to xf (leaves)
and after it (hubs). In the case of hubs with λ > 2:

Vh =

∫ ∞
xf

xcx−λ dx = − c

−λ+ 2
x−λ+2
f

The expected the degree for the leaves is similar:

Vl =

∫ xf

xmin

xcx−λ dx =
c

−λ+ 2

[
x−λ+2
f − x−λ+2

min

]
For a power-law distributed network a similar derivation

as the one above can be used to show the fraction of edges
going to some fixed fraction of the most highly connected
nodes. Consider a scale-free network where E denotes the
fraction of the edges connected to some fraction f of the
highest degree nodes, then the following equation relates E
to f :

E = f
λ−2
λ−1

This solution, derived first in [21], yields an important mea-
sure of the probability that a randomly selected edge will
lead to either a hub or a leaf, determined entirely by the
parameters of the scale-free distribution. For example, if we
take the top 50% of nodes to be the hubs on a scale-free

network with λ = 2.1, we can say that 0.5
0.1
1.1 ≈ 0.938 or

that approximately 93% of all edges will go to hubs while
only 7% will go to leaves. Considering the equation above,
the number of hub edges per leaf edge increases heavily as

182



λ → 2. The imbalance of edges may cause disproportion-
ate amounts of communication with the hubs and therefore
decrease the overall load balance.

The expected number of arrival events a leaf expects to
see, Rl, is modeled by the expected number of edges for a
leaf, split into fN hubs and (1 − f)N leaves for a network
with N nodes, each scaled by the average case probability
of receiving a message on that edge. We use f to partition
the nodes into two sets for the analysis. With the approxi-
mate number of total edges, we must separate the expected
number of edges from hubs and leaves and then scale by the
probability that a message was sent down those channels.
By calculating leaves and hubs separately, the total number
of incoming messages can be calculated. First for a leaf:

Rli = Vl(1− f) · E[B(vi−1, 1/Vl)] + Vlf · E[B(ui−1, 1/Vh)]

and for a hub:

Rhi = Vh(1− f) ·E[B(vi−1, 1/Vl)] + Vhf ·E[B(ui−1, 1/Vh)]

Often such binomial distributions are approximated with
Poisson random variables of matched mean. Because 1/Vl
may be relatively large, our approach cannot safely make
this substitution. Here we make use of the expectation of a
binomial E[B(N, p) ] = Np resulting in:

Rli = Vl(1− f)
vi−1

Vl
+ Vlf

ui−1

Vh

for the average leaf node and,

Rhi = Vh(1− f)
vi−1

Vl
+ Vhf

ui−1

Vh

for the average hub node.
Let the service time of events be an exponential random

variable, with rate µs. We are interested in determining
the expected number of messages that are scheduled in the
ith subsequent generation. If the current time is t, the ith
subsequent generation is the period in simulation time for
which the events timestamps are [t+ (i+ 1)L, t+ (i+ 2)L).

P{Service entry arrival time ∈ ith generation}

=

∫ t+(i+2)L

t+(i+1)L

e−µsudu

=
1

µs

(
e−µs(t+iL+L) − e−µs(t+iL+2L)

)
With the above probability, the mean number of events that
fall outside of the first generation into each of the ith subse-
quent generations can be calculated. This value is added to
the expeceted number of messages in that generation. This
calculation must be done at each iteration to mimic the ef-
fects of scheduling future events.

Leaf:

E[Gl0] = Glinit

Hub:

E[Gh0] = Ghinit

Initial values for the number of events in the first genera-
tion, Ghinit andGlinit are required. The next generation is a
recurrence based on the previous value, because the number
of messages received at generation i dictates the number of

messages to be dealt with in the next and subsequent gen-
erations. Given the first generation expected values, later
generations within this model may be determined.

Leaf:

E[Gli]+= Rli

Hub:

E[Ghi]+= Rhi

The recurrence lies within the calculations of Rli and Rhi
and the number of events already scheduled in the current
generation. Given initial conditions to determine the first
generation, subsequent generations can be solved in an in-
terative manner. This iterative analysis steps generation by
generation over the course of a simulation. From these re-
sults the expected number of messages per epoch as well as
some of the scale-free network behavior can be gleaned.

4.3 Largest Node Degree
In order to investigate the workload of the largest hub, an

estimate of that node’s degree is needed.
Given n samples drawn from a power-law distribution, we

first compute the probability that the largest value, xmax,
lies in the interval between x and x + dx. Let P (x) be the
probability that x ≥ X, then:

P (x) =

∫ ∞
x

p(x′)dx′ =

(
x

xmin

)−λ+1

We are concerned with the total proportion of nodes with
degree greater than or equal to xmax. Consider the following
heuristic argument:

P (x ≥ xmax)

P (x ≥ xmin)
≈ 1

n
,

for some x, then there will be on average a single sample
in the range x to ∞. This single sample will be the largest
value. Given that ∫∞

xmax
cx−λdx∫∞

xmin
c′x−λdx

≈ 1

n
,

solving for xmax:

xmax ≈ xmin · n
1

λ−1 .

In the case where the minimum out-degree across all nodes
is one (xmin = 1), the equation above simplifies further to

xmax ≈ n
1

λ−1 .

For a more rigorous derivation that arrives at the same
approximation see the appendix of [21].

This result is important because the hub with the largest
degree will likely form the bottleneck when using the syn-
chronous simulation protocol. For λ > 2 the largest hub
grows at a fractional power of the hubs. However when
λ = 2 the largest degree grows linearly with the number of
vertices and when λ < 2 the rate of growth is superlinear.
For example let λ = 1.8 the maximum degree grows at a rate
approximately n1.25 [21, 26]. Although in a real network the
maximum degree reaches a hard limit of the number of ver-
tices in the graph, the value of λ determines how quickly
xmax reaches this point.
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4.4 Numerical Experiments and Results
For illustrative purposes, consider the analytical model in-

troduced previously assuming the top 25% of nodes are hubs
in a scale-free network with λ = 2.5. Let xmin = 1, such
that all nodes have at least one edge connecting them in the
network. Initially, each node has the same initial number
of events. In the following experiments an initial set of 10
events per LP was used. As mentioned in the previous sec-
tion, each event that is processed produces exactly one new
event with timestamp increment drawn from an exponential
distribution. The model is iterated until a steady-state is
reached.

This iteration is repeated for leaf, hub, and the largest
(highest degree) hub expected for a particular network size
N . The steady state expected number of messages per node
type is calculated, with an estimate of the number of mes-
sages the largest hub would receive. The minimum time for
completion, emax, as determined by the longest running LP
is calculated. In all cases tested emax was determined by
the largest hub. The total number of messages processed W
is calculated. From these values P emerges. This process is
repeated for scale-free distributions with varied λ’s.

Figure 2: The model’s potential parallelism given
varied λ and network size.

Consider the behavior shown in figure 2. As expected, the
potential parallelism increases with the number of nodes,
however it is seen to be strongly dependent on λ. Because
the derivation of the analytical model requires that λ > 2,
the experiments focused on values larger than 2. While the
analytical model cannot be used to for networks where λ <
2, the behavior of those scale-free networks will be more
imbalanced than the networks tested here. This arises from
the fact that as λ → 1 the distribution becomes more tail-
heavy, with the bulk of edges being pushed toward the hubs.

Given the analytical synchronous model above, one is nat-
urally interested in the relevant λ’s for networks that arise
in practice. We have calculated the available parallelism for
a telecommunications dataset. The dataset represents the
collection of phone calls made during a single day among
a large group of entities who made or received at least one
call. The calculation of P utilizes several summary param-
eters from the dataset; network size (number of entities),
minimum number of connections or calls (one call) and ap-

proximations of empirical λ for the dataset. For λ = 2.22
[21] and a network containing 1.1 million nodes the empirical
data yielded a potential parallelism of only P = 55.21. As an
approximate upper bound of the potential parallel improve-
ment for simulating this network in a distributed setting,
this value suggests that the scale-free nature of the network
topology will significantly limit the amount of speedup that
can be obtained using parallel simulation. The parallelism
was limited largely by the low λ value which was caused by
a few hub-entities making a large numbers of calls; likely
these originated from businesses or telemarketing groups.

4.5 Discussion
The analytical model for synchronous approaches makes

some assumptions that increase it’s sensitivity to changes
in λ. For example, the system utilizes the aforementioned

relation, E = f
λ−2
λ−1 , to calculate the proportion of edges

connected to hubs. This relation is derived from a set of
integrals that diverge when λ ≤ 2. This does not necessar-
ily mean that the averages themselves will all be infinite,
but rather that individual measurements may be so large
and varied that the average never converges. What happens
analytically as λ→ 1 is that the tail of the distribution be-
comes heavier and heavier. In terms of a network topology
this means that the number of edges going to the hubs in-
creases until the point of saturation, wherein every edge is
connected to a node in the set of hubs.

As expected, parallelism increases with the number of LPs
(see fig. 4). However the amount of parallelism increases at
only a modest rate. This is because the hub nodes become
a bottleneck, limiting parallelism increases as more LPs are
added. The parallelism increases more slowly for lower val-
ues of λ because these networks have more heavily loaded
hub nodes. The higher the degree of the hubs nodes, the
more events they receive and the longer it takes to process
these events in a given epoch. Because the calculation of
parallelism is determined by the longest epoch runtime (re-
alized by the highest degree hub), there is less parallelism
available in these networks. This suggests that the λ value
of a scale-free network has significant implications on the
amount of speedup that can be obtained.

5. SIMULATION RESULTS
We now describe the results of simulation experiments us-

ing the näıve and demand-driven CMB protocol to evaluate
performance and overhead in simulating scale-free networks.
A graph with an approximate power-law degree distribution
of fixed λ was created via the Barabasi-Albert method im-
plemented using a stochastic algorithm [4]. The experiments
covered in this section were run on various sizes of scale-free
networks. The simulated CMB algorithm begins by queuing
simulated events with timestamp drawn from an exponential
distribution. We assume that when each event is processed,
a single new event is scheduled with timestamp increment
drawn from an exponential distribution. We assume a fi-
nite, nonzero lookahead. A neighboring LP is then selected
from a uniform distribution and the event is sent to that LP.
This approach maintains a constant number of messages. A
steady state behavior can be observed after an initial tran-
sient period. The number of null messages are counted as a
measure of simulation overhead.
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5.1 CMB Results
We calculate the parallelism for the CMB methods. Let

esim be the number of simulation-relevant events–events that
are not null messages–and enull be the total number of null
messages. Assume that each message, null or simulation-
relevant, requires only 1 unit of wallclock time. The paral-
lelism of the entire simulations can then be calculated as:

P =
esim

esim + enull

The following data were collected with experimental λ = 2.5.
The top 25% of the most connected nodes were considered
as the hubs. The mean null and event message counts were
taken once the system reached steady state.

Figure 3: The average parallelism for the näıve
CMB algorithm versus λ.

Experimental results for näıve CMB are presented in fig-
ure 3. The average parallelism as λ is varied is shown, and
indicates that parallelism with asynchronous approaches is
also driven by λ. The average parallelism for the näıve CMB
algorithm increases as the value of λ increases. This agrees
with the intuition that low values of λ cause a large amount
of null message traffic to and from hub nodes.

The same experimental experimental conditions were used
in the demand driven approach to assure experimental con-
sistency. Even the parallelism of the CMB algorithm with
the previously discussed optimizations is still susceptible to
changes in λ; see figure 4. The demand driven CMB exhib-
ited similar results to its näıve predecessor, albeit with sig-
nificantly less overhead. Because this optimization reduces
the amount of null message passing, it reduces the strain
on the hubs when broadcasting null messages considerably;
allowing for more parallelism than the näıve approach.

Figure 5 illustrates the number of null messages received
by each distinct set of nodes. The hubs receive a constant
factor more null messages than the leaves as the network size
increases. Both asynchronous synchronization algorithms
exhibited this behavior; again the demand driven CMB used
fewer total null messages.

The mapping of LPs to processors in order to balance the
workload is an important issue in any distributed simula-
tion program. Given the rich get richer nature of heavy

Figure 4: The average parallelism for the demand
driven CMB algorithm versus λ.

tailed degree distributions, the amount of work and number
of messages going to hubs can be wildly disproportionate.

5.2 Discussion
Both CMB parallelism experiments resulted in an increase

in average parallelism as the value of λ increases. This is
consistent with the observation that the heavy tails of scale-
free networks lead to limited parallelism.

Both CMB experiments show an increasing number of
overhead messages as the network grows. For the näıve case,
we expect that the growth in null messages will scale su-
perlinearly with the number of nodes. This growth arises
from the näıve choice to broadcast the null messages to each
neighbor. See figure 5.

This highlights potential issues regarding the scalability of
these synchronization protocols for large scale-free networks.
These experiments indicate that the difference in the load
received and processed by LPs is a constant factor scaled by
the size of the network and the particular λ value. The hubs
become increasingly more severe bottlenecks as the size of
the topology is increased. As both CMB experiments require
a stochastically generated network sampled from a power-
law degree distribution, they are less reliant on the edge-
wealth relation and therefore more resilient to perturbations
in λ.

6. CONCLUSIONS AND FUTURE WORK
Both the analytical model and simulation experiments

highlight the highly unbalanced nature of parallel simula-
tions of scale-free networks. The analytical model shows
that hub nodes quickly become severe bottlenecks in paral-
lel simulations. The exponent of the power-law distribution,
λ plays an important role in determining the severity of the
resulting hub node bottleneck. As λ decreases toward 1, the
tail of the degree distribution becomes heavier, increasing
the magnitude of the bottleneck. This results in the degree
of the largest hub growing extremely quickly as network size
is increased, especially when λ is near 2 or smaller. Our
analytic model as well as the empirical simulation results
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Figure 5: The overhead for both CMB approaches
broken down by hub and leaf nodes.

showed that the value of λ has a strong influence on paral-
lelism, and the potential speedup that may be obtained.

Networks with power law degree distribution appear in
many natural and human-made systems. These studies il-
lustrate that achieving efficient parallel execution of simu-
lations of scale-free networks is a challenging task. There
are many avenues of future research. The analytic models
described here require further refinement and generalization
for different classes of workload models. There are two im-
portant extensions to the analytical model; the first in the
distribution of events across the LP’s and the second to in-
vestigate the potential costs of LP-LP link delays. The im-
pact of non-uniform event distributions across the LPs have
not been deeply investigated and will help generalize the
results to more realistic systems. The second extension to
the model will allow us to model realistic synchronous dis-
tributed simulations with higher granularity by controlling
the link delay distribution.

Models of other synchronization protocols are needed, e.g.,
other conservative protocols and optimistic synchronization
mechanisms. More extensive experiments with real-world
applications are needed to verify the observations reported
in this paper appear in practice. Because scale-free and ap-
proximately power-law distributions appear in many impor-
tant natural systems, a key facet of the future work will be
spent examining distributed simulations running scale-free
models.

Finally, many challenges exist to achieve efficient parallel
simulation of large, scale-free networks. Additional research
is required to identify effective synchronization methods for
scale-free network simulations. Effective means to address-
ing the bottleneck issues of scale-free networks are needed.
Scale-free networks have the potential to reveal interesting
behaviors in complex systems. More real world data are
needed relating the performance of new systems to their un-
derlying topology.
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