
GraSP: Distributed Streaming Graph Partitioning

Casey Battaglino
Georgia Institute of

Technology
cbattaglino3@gatech.edu

Robert Pienta
Georgia Institute of

Technology
pientars@gatech.edu

Richard Vuduc
Georgia Institute of

Technology
richie@gatech.edu

ABSTRACT
This paper presents a distributed, streaming graph parti-
tioner, Graph Streaming Partitioner (GraSP), which makes
partition decisions as each vertex is read from memory, sim-
ulating an online algorithm that must process nodes as they
arrive. GraSP is a lightweight high-performance comput-
ing (HPC) library implemented in MPI, designed to be easily
substituted for existing HPC partitioners such as ParMETIS.
It is the first MPI implementation for streaming partition-
ing of which we are aware, and is empirically orders-of-
magnitude faster than existing partitioners while providing
comparable partitioning quality. We demonstrate the scala-
bility of GraSP on up to 1024 compute nodes of NERSC’s
Edison supercomputer. Given a minute of run-time, GraSP
can partition a graph three orders of magnitude larger than
ParMETIS can.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph Algorithms

General Terms
Theory

Keywords
graph partitioning, streaming algorithms, distributed-memory
algorithms

1. INTRODUCTION
We consider the problem of partitioning a power-law graph

on a distributed memory system. Power-law graphs are
ubiquitous in the real world, and arise particularly in social
networks where data sizes are growing at enormous rates.
As we will discuss, partitioning is a key step for algorithms
that arise in applications such as fraud detection, bioinfor-
matics, and social and information network analysis, among
numerous others.

The speed of data-mining algorithms on power-law graphs,
at scale, is often limited by bottlenecks in network commu-
nication and load imbalance [18]. Partitioning is the com-
mon preprocessing step to find a mapping of the data to

This work is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License
http://dx.doi.org/10.5821/hpgm15.3
HPGM’15, August 10, Sydney, Australia.

processors of the system that alleviates these two issues; in
distributed computing the desired objective is generally the
minimization of inter-partition edges (to minimize commu-
nication) subject to balanced partition size (to favor load
balance).

Formally, we wish to partition the nodes of a graph into
k balanced components with capacity (1 + ε)N

k
, such that

the number of edges crossing partition boundaries is mini-
mized. Partitioning with these two requirements can be re-
duced to the minimum-bisection problem [9] and is therefore
NP-Complete. Thus, computing an optimal mapping is gen-
erally computationally infeasible, and heuristic approaches
are taken.

Figure 1: Parallel streaming partitioning.

To illustrate the role of partitioning on performance, con-
sider a parallel Breadth-First Search (BFS), a central prim-
itive for graph analysis where vertices are partitioned be-
tween two machines in a ‘1D’ distribution [6]. During each
BFS step, each process must communicate all newly ex-
plored target vertices to process that owns them. In Fig-
ure 2, if we have 4 processes, all 10 nonzeros in the non-
diagonal blocks must be communicated at some point. A
good partitioner concentrates nonzeros in the diagonal blocks,
thereby reducing communication.1 The frontier-expansion
inherent to BFS is also seen in many higher-level graph al-
gorithms, examples of which include shortest-path, connec-
tivity, betweenness-centrality, and PageRank computations.
While partitionining provides a clear benefit for distributed-
memory systems, it can also improve the performance of
shared-memory implementations [13].

Offline graph partitioning algorithms have existed for dec-
ades. They work by storing the graph in memory with com-
plete information about the edges. Many variants of these
algorithms exist [7] and range from spatial methods [10] to
spectral methods [4]. Some of the most effective offline graph
partitioners are multi-level partitioners, which recursively
contract the graph to a small number of vertices, and then

1Computing exact communication volume requires a hyper-
graph partitioner [8].

A=

76
5

8

1
3

4

2
1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Figure 2: Graph 4-partition shown with correspond-
ing adjacency matrix. The intra-partition edges are
shown in their partition color, while inter-partition
edges are shown as dotted black lines. Inter-
partition edges or cut-edges result in additional net-
work communication and lowered performance.

heuristically optimize the partitioning while expanding back
to the original graph [11]. These methods are especially ef-
fective on geometric graphs, that is, graphs that arise from
some physical geometry, like the discretized finite element
mesh of a physical object. Parallel multi-level partitioners
will serve as the baseline comparison for our implementation.

Streaming Partitioning.
Streaming partitioning is the process of partitioning a

graph in a single sweep, reading vertices and edges only
once. Thus we incur O(|V | + |E|) memory access, storage,
and run time, with minimal overhead. Offline graph parti-
tioners require the entire graph to be represented in memory,
whereas streaming graph partitioning may process vertices
as they arrive. This fits a model where input data arrive se-
quentially from a generating source (such as a web-crawler).

In an initial study, partitioning a 26 GB Twitter graph
has been shown to take 8 hours using the fastest offline al-
gorithms, and only 40 minutes with the FENNEL streaming
partitioner, with similar partition quality [23]. This also sug-
gests that we could do multiple, iterative passes of a stream-
ing partitioner, all in a fraction of the time that an offline
partitioner would take to terminate. This technique and
its convergence properties have been explored by Nishimura
and Ugander [20]. In this paper we demonstrate empirically
that efficiently distributing this streaming partitioning pro-
cess can reduce the run-time for problem of this magnitude
to a matter of seconds.

Contributions.
We have developed GraSP, a fast, iterative, distributed

streaming graph partitioner. It works by restreaming the
distributed graph with tempered partition parameters to
achieve a fast, parallel k -partitioning. When applied to
scale-free graphs, GraSP attains an edgecut competitive
with more sophisticated algorithms, but can operate on graphs
multiple orders of magnitude larger within the same run-
time.

For instance, ParMETIS takes at least 1 min to partition
a Scale-21 R-MAT graph (see § 3) on any number of com-
pute nodes in our experiment, with run-time ballooning for
larger scale graphs. GraSP performs a partitioning stream
of a Scale-31 R-MAT graph (with 1024 as many vertices and
edges) on the same setup in under 20 seconds, with compa-

rable edge-cut after 5-10 restreams.
GraSP operates on a distributed CSR graph representa-

tion, the same data structure used by ParMETIS, and can
therefore be easily substituted in high-performance codes.

2. METHODOLOGY
While there are many possible heuristics for streaming

partitioning [22], the most effective by far have been weighted,
greedy approaches. We maintain a compressed array stor-
ing the partition assignments of vertices streamed so far
(P ti for each process i at time t). As each vertex v is
streamed, we count the edges from that vertex to each parti-
tion |P ti ∩N(v)|. This intuitively maximizes modularity, the
ratio of intra-partition edges to inter-partition edges. How-
ever, using this value on its own would result in all vertices
being assigned to a single, large partition. Thus, we expo-
nentially weight the edge counts by the size of partitions
|P ti |, relatively dampening the scores for partitions that are
too large (but penalizing only lightly for small differences in
size). This gives us two parameters: the linear importance
of partition size to the score, α, and the exponential rate
at which increasing partition size incurs a greater penalty,
γ. This yields the basic ‘FENNEL’ algorithm [23] shown
in Algorithm 1.

Set all Pi to ∅;
foreach v ∈ V (G) as it arrives at time t do

j ← argmax
i∈{1,...,p}

|P ti ∩N(v)| − αγ
2
|P ti |γ−1;

Add v to set P t+1
j ;

end
Algorithm 1: Serial streaming FENNEL partitioner

Exact computation of this algorithm as described is not
possible in parallel, because P t−1

i must be known to com-
pute P ti . A multi-threaded approximation of this algorithm
is easily performed by relaxing this requirement and using
P t−pi to compute P ti , where p is the number of threads.
This resulted in only a small drop in partition quality in
our experiments: the serial algorithm is already inherently
approximate, and p is very small compared to |V |.

To compute this algorithm in distributed memory, a naive
approach is to constantly broadcast and apply partition as-
signments as they are computed. Without synchronization,
this results in a drastic drop in partition quality, because
the latency across a network is high enough that partition
assignments are perpetually out of date. Synchronization, if
implemented efficiently, could be used to improve partition
quality of a single pass at the expense of poorer scalability.
However, we instead emphasize an approach that achieves
even higher partition quality and balance through multiple
streams with minimal synchronization.

Our implementation follows the methodology of ‘restream-
ing partitioning’ [20], which shows the single-pass algorithms
of FENNEL and WDG [22, 23] can be repeated over the
same data in the same order, yielding a convergent improve-
ment in quality. This approach has other benefits that we
utilize:

• Partition data is only communicated between streams,
yielding high parallelism.

• Parameters (α, γ) can be ‘tempered’ to achieve higher-
quality, balanced results that avoid immediate global
minima.

2.1 GraSP

GraSP operates on a distributed graph G in distributed
CSR format. We take as input the parameters α, γ, the
number of partitions p (assumed to be equal to the number
of MPI processes), the number of re-streams ns, and the
‘tempering’ parameter tα. GraSP then performs ns itera-
tive passes over the graph (in identical random order), multi-
plicatively increasing the balance parameter by tα with each
pass. This promotes a high-quality, but less-balanced par-
tition early on, while further promoting balance with each
subsequent pass [20].

Between each pass, the partition information (an array
that maps each vertex to a partition) is communicated across
all processors using the MPI AllGather primitive, which
is often optimized for a given network architecture. The
pseudocode for GraSP is shown in Algorithm 2. Here, P ti,p
is the ith partition set maintained on process p at time t.

for each process p do in parallel
vorder ← rand perm({0, . . . , |V (Glocal)|});
Randomly assign local vertices to partitions P 0

i,p;

end
for run← {1 . . . ns} do

for each process p do in parallel
foreach v ∈ vorder do

j ← argmax
i∈{1,...,p}

|P ti ∩N(v)| − αγ
2
|P ti |γ−1;

Add v to set P t+1
j,p ;

end

end
MPI AllGather global partition assignments;
α← tαα

end
Algorithm 2: Parallel Restreaming performed by GraSP.

This method is illustrated graphically in Figure 3. In prac-
tice, we store the partitioning in a single compressed array,
updating partition assignments in-place while storing a run-
ning count of the partition sizes.

To increase accuracy, we found it necessary to update the
global partition sizes |P ti | at finer granularities within the
stream. Since there are only p such values, this incurs a
very small amount of communication. In our experiments
we used the MPI AllReduce primitive to update partition
sizes every time we had processed a constant number of ver-
tices. We found that updating every 4096 vertices yielded
good quality with only a small performance hit. This is a
natural target to optimize with non-blocking primitives.

In Algorithm 2, each process computes O
(
ns · |E|+|V |p

)
work, and the network incurs a time of ns·Tallgather(|V (G)|).
ns is determined by restreaming until some criteria is satis-
fied (either that we have encountered a local minimum, or
we have achieved a good tradeoff between balance and edge-
cut), or by choosing a number of restreamings and setting
the tempering parameter tα so that we achieve perfect bal-
ance within that number. In our experiments, we generally
see good partitions within 10 restreams.

1

2

3

4

AllGatherStream Restream

Figure 3: Two parallel restreaming steps on four
processes.

3. EVALUATION
We ran our distributed experiments on a subset of the

Edison machine at NERSC, featuring 5576 compute nodes
with two 12-core Intel“Ivy Bridge”processors per node and a
Cray Aries interconnect. We utilized a Cray implementation
of MPI v3.0 for message passing.

We evaluate GraSP by its runtime as well as the quality
of the partition that it produces, which we measure with
fraction of cut edges λ.

λ =
Number of edges cut by partition

Total number of edges
(1)

where lower numbers represent a higher degree of locality.
We can compare this to our baseline, the expected quality
of a random k−partition, λr = k−1

k
. Any partitioner that

produces partitions with λ < λr has improved the parallel
locality of the partitions.

Balance is also an important metric in partitioning. Our
basic metric for balance is the number of vertices in the
largest partition divided by the number of vertices in the
smallest partition, and we design our restreaming framework
to perform a tempered restream until balance is within a
decent tolerance (≈ 1.2).

3.1 Test Graphs
We measure our approach with both synthetic and real-

world graphs. While synthetic graphs make for excellent
scalability experiments, demonstration on real-world net-
works is important to verify that the partitioner works well
in practice.

3.1.1 Real-world Graphs
The SNAP dataset is a collection of real-world networks

collected by Leskovec and collaborators [2, 15]. Many net-
works in this collection are power-law and scale-free rep-
resentatives of social networks (such as collaboration net-
works, citation networks, email networks, and web graphs).
We consider these to be excellent representative networks
for a variety of domains. It is these types of networks that
will continue to increase in size in the years to come. We
ran GraSP on a representative selection of these graphs,
and outline the results in Table 1 and in § 3.3.

3.1.2 Synthetic Graphs
For scalability experiments we generated random undi-

rected power-law Kronecker (R-MAT) graphs of varying scale
in parallel using the Graph500 Reference implementation [1].

Table 1: Basic properties of graphs in SNAP data
set [15], and λ for one pass. λr,2 = 0.5, λr,8 = 0.87

Data Set N nnz λp=2 λp=8

soc-LiveJournal 4,847,571 68,993,773 0.234 0.463
as-Skitter 1,696,415 22,190,596 0.166 0.324

cit-Patents 3,774,768 16,518,948 0.402 0.726
roadNet-CA 1,971,281 5,533,214 0.186 0.360
web-Google 916,428 5,105,039 0.189 0.336

wiki-Talk 2,394,385 5,021,410 0.411 0.752
amazon0302 262,111 1,234,877 0.202 0.370

soc-Slashdot0902 82,168 948,464 0.236 0.382
ca-AstroPh 18,772 396,160 0.232 0.413
cit-HepPh 34,546 421,578 0.343 0.646

email-EuAll 265,214 420,045 0.280 0.538
Oregon-1 11,492 46,818 0.224 0.406

p2p-Gnutella04 10,879 39,994 0.415 0.747

Table 2: Edge and vertex counts for generated R-
MAT graphs of each scale.

Scale 26 27 28 29 30 31

|V(G)| 67M 134M 268M 537M 1.07B 2.15B
|E(G)| 1.07B 2.14B 4.29B 8.58B 17.1B 34.3B

Kronecker graphs are commonly used in HPC graph bench-
marks and testing. We choose to use them in our experi-
ments because we can very quickly generate arbitrarily large
instances in parallel, and they have been proven to have
properties common to most power-law networks in the real
world [16]. The scale of an R-MAT graph is equal to log |V (G)|,
and the edge-factor is the average number of edges per node,
which we hold constant at 16. Vertex and edge counts for
the scales we experiment on are shown in Table 2.

3.2 Scalability

3.2.1 Weak Scaling
Weak-scaling holds the amount of data per process con-

stant as we increase the number of processes. In our ex-
perimental setup we achieve this by doubling the number
of MPI processes every time we increase the scale of the
R-MAT generator. This yields the per-stream timing exper-
iments in Figure 4, where each line is labeled with the size
of data per process:

This demonstrates that, for a reasonable number of MPI
processes, we can scale up our problem sizes without en-
countering wasteful overhead from the network.

3.2.2 Strong Scaling
In strong-scaling, the size of the data is fixed while the

number of processes inreases. Strong-scaling is heavily pe-
nalized by serial portions of code (as dictated by Amdahl’s
law) and growing network overhead. GraSP exhibits a high
degree of parallelism, illustrated in Figure 5.

While ParMETIS can’t execute in a reasonable time on
the problem sizes we demonstrate for GraSP, we show a

Table 3: Weak scaling results for ParMETIS on R-
MAT graphs, with 218 vertices per compute node.

#procs 8 16 32 64 128

Time (s) 5.01 10.2 25.0 64.0 167.0

Figure 4: Per-stream times of GraSP in a weak-
scaling experiment. This demonstrates that we can
scale to very large problem sizes without network
overhead dominating the runtime.

Table 4: Comparison of run-time and partition qual-
ity between ParMETIS and GraSP for a Scale-22
R-MAT graph.

#procs λmetis λgrasp tmetis(s) tgrasp(s)

8 0.36 0.29 307.8 0.72
16 0.38 0.41 221.9 0.45
32 0.40 0.54 194.9 0.31

small strong-scaling experiment in Table 4.
Performance inevitably plateaus for GraSP as local prob-

lem sizes become small in the face of increasing network
overhead. However, for smaller degrees of parallelism we
demonstrate near-linear scaling.

3.3 Quality
In Table 1 we show some properties of our real test-graphs,

as well as the performance of our streaming partitioner on
them, for p = 2 and p = 8 partitions..

We confirm the validity of the restreaming approach on
the SNAP data sets for the two values of p in Figs. 6 and 7,
respectively. The tradeoff between vertex balance and parti-
tion quality for a large scale GraSP computation is demon-

Figure 5: Per-stream times of GraSP for various
strong-scaling data sizes. For instance, we can per-
form a single partitioning pass over a 34 billion edge,
2.1 billion node network in just 15 seconds.

Figure 6: Improvement in the edges cut (λ) over
5 passes for bi-partitions of each graph. Because
there are only two partitions, the algorithm is able
to quickly fix mistakes it made in the initial parti-
tioning. Many of the errors made in the first pass
are fixed in the second iteration, with diminishing
improvement thereafter.

strated in § 3.4.
In a direct comparison to ParMETIS, Table 4 demon-

strates that GraSP finds comparable partition quality in
a small fraction of the time, although it computes a worse
edge-cut than ParMETIS when partitioning a small graph
into a large number of partitions.

3.4 Analysis
Our scalability tests have demonstrated that GraSP is

highly parallel and performs quality partitions far faster
than more sophisticated algorithms. A single stream over
a 34 billion edge, 2.1 billion node network can be done in
just 15 seconds. Performing a constant number of restreams
while tempering the balance parameter allows us to find a
good tradeoff between partition balance and partition qual-
ity.

Partitions of power-law graphs are known to involve such
a tradeoff [14]. Continuously better cuts can be found as
we relax our requirements for vertex balance. To illustrate
this, we show the tempering process of GraSP computing
on a Scale-28 R-MAT graph on 64 processes. In Fig. 8 we
show how partition balance and λ change as we continue
to restream the graph. We begin with a random ordering
(which tends towards perfect balance and worst-case qual-

Figure 7: Improvement in edges cut (λ) over 5
passes for 16-partitions of each graph. Dividing the
graph into 16 partitions makes the minimum edge
cut problem much more challenging. Similar to the
bi-partition results, we experience the best gain in
the second pass and less in subsequent passes.

Figure 8: Time-series of tempering process on a
Scale-28 R-MAT graph on 64 MPI processes, be-
ginning from a random partition. Lower quality is
better, while the optimal balance is 1.

ity λr). Balance immediately worsens, albeit with excellent
partition quality, and then the tempering process increases
balance at the expense of higher edge-cut. Eventually we
reach a point within the balance tolerance and terminate.

In Figure 9 we illustrate the tradeoff curve inherent in this
process.

Figure 9: Tradeoff between node balance and edge-
cut (of a 64-partition) encountered during temper-
ing process.

4. RELATED WORK
Partitioning is an important step in many algorithms. In

HPC applications ranging from simulation to web analytics,
the quality of partitions can strongly affect the parallel per-
formance of many algorithms. Partitioning can also be used
to identify community structure. We mention here a small
sample of contemporary work in graph partitioning.

Streaming partitioning for a variety of heuristics was first
presented by Stanton and Kliot [22], the Weighted Deter-
ministic Greedy approach generalized by Tsourakakis, et.
al [23], and the benefits of restreaming for convergence and
parallelism determined by Nishimura and Ugander [20], al-
though large-scale parallel experiments and benchmarks were
not performed. Our implementation is the first parallel
HPC-oriented study that we are aware of.

Streaming partitioning has been successfully adapted for
edge-centric partitioning schemes like X-Stream [21]. X-
Stream uses edge partitioning, to streams edges rather than
vertices, which takes advantage of increased sequential mem-
ory access bandwidth.

A survey by Buluç, et. al [7] provides an excellent overview
of conventional HPC graph partitioners, from spectral to
spatial. Boman, et. al show how conventional graph parti-
tioning can be used to optimize distributed SpmV [5]. How-
ever, recent approaches to scale conventional multi-level par-
titioners to billion-node graphs can still take hours [25].
Streaming partitioners on the other hand have attracted at-
tention in the field of dynamic Graph Databases. For net-
works with dynamic structure, iterative approaches can dy-
namically adjust the partitions to suit changing graph struc-
ture. Vaquero et al. propose a method for iteratively ad-
justing graph partitions to cope with changes in the graph,
using only local information [24]. This work demonstrated
the power and scalability of leveraging local data to im-
prove partition quality, especially to reduce the edges cut.
“Sedge,” or Self Evolving Distributed Graph Management
Environment also takes advantage of dynamically managing
and modifying partitions to reduce network communication
and improve throughput [26].

Frameworks like Pregel [19], make use of hashing-based
partition schemes. These allow constant-time lookup and
prediction of partition location based on only the vertex
ids. GraphLab [17] also uses a hashed, random partition-
ing method, which essentially produces a worst-case edgecut

(λr), but which has the benefit that H(v) can be called at
any time to return the compute node that owns v. Khayyat
et al. showed that a preprocessed partitioning of large-scale
graphs is insufficient to truly minimize network communica-
tion [12]. They propose another dynamic partition approach
that allows vertex migration during runtime to maintain bal-
anced load.

5. CONCLUSION
In this work, we demonstrated GraSP, a distributed, stream-

ing partitioner.
While Power-Law graphs are considered to be very dif-

ficult to partition [3], we have demonstrated that a very
simple, fast algorithm is capable of significantly reducing
communication in their parallel computation. Using the
methodology outlined by Nishimura and Ugander [20] and
applying an HPC framework we have scaled the partitioning
process to graphs with billions of nodes in a matter of sec-
onds, while more sophisticated graph partitioners struggle
on graphs that are orders of magnitude smaller.

We have demonstrated our implementation on both real
world and high-scale synthetic graphs on a leading super-
computer. GraSP is scalable and can partition a graph
of 34.3 billion edges in 15 seconds, while maintaining parti-
tion quality comparable to what competing implementations
achieve on smaller-scale graphs.

References
[1] Graph 500. http://www.graph500.org/. Accessed:

2015-03-30.

[2] Snap networks. http://snap.stanford.edu/data/

index.html. Accessed: 2015-03-30.

[3] A. Abou-Rjeili and G. Karypis. Multilevel algorithms
for partitioning power-law graphs. In Proceedings of
the 20th International Conference on Parallel and Dis-
tributed Processing, IPDPS’06, pages 124–124, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[4] S. Arora, S. Rao, and U. Vazirani. Expander flows,
geometric embeddings and graph partitioning. Journal
of the ACM (JACM), 56(2):5, 2009.

[5] E. G. Boman, K. D. Devine, and S. Rajamanickam.
Scalable matrix computations on large scale-free graphs
using 2d graph partitioning. In Proceedings of the Inter-
national Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’13, pages 50:1–
50:12, New York, NY, USA, 2013. ACM.

[6] A. Buluç and K. Madduri. Parallel breadth-first search
on distributed memory systems. In Proceedings of
2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11,
pages 65:1–65:12, New York, NY, USA, 2011. ACM.

[7] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent advances in graph partitioning. In
Technical Report. November 2013.

[8] U. Catalyurek and C. Aykanat. Hypergraph-
partitioning-based decomposition for parallel sparse-
matrix vector multiplication. IEEE Trans. Parallel Dis-
trib. Syst., 10(7):673–693, July 1999.

http://www.graph500.org/
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html

[9] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY,
USA, 1979.

[10] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric
mesh partitioning: Implementation and experiments.
In In Proceedings of International Parallel Processing
Symposium, pages 418–427, 1995.

[11] G. Karypis and V. Kumar. Multilevel k-way partition-
ing scheme for irregular graphs. Journal of Parallel and
Distributed computing, 48(1):96–129, 1998.

[12] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,
D. Williams, and P. Kalnis. Mizan: A system for dy-
namic load balancing in large-scale graph processing. In
Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, pages 169–182, New
York, NY, USA, 2013. ACM.

[13] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. In Pro-
ceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages
31–46, Berkeley, CA, USA, 2012. USENIX Association.

[14] K. Lang. Finding good nearly balanced cuts in power
law graphs. Technical report, 2004.

[15] J. Leskovec. Stanford Large Network Dataset Collec-
tion.

[16] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos,
and Z. Ghahramani. Kronecker graphs: An approach to
modeling networks. J. Mach. Learn. Res., 11:985–1042,
Mar. 2010.

[17] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Ky-
rola, and J. M. Hellerstein. Distributed graphlab: a
framework for machine learning and data mining in the
cloud. Proc. VLDB Endow., 5(8):716–727, Apr. 2012.

[18] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry.
Challenges in parallel graph processing. Parallel Pro-
cessing Letters, 17(01):5–20, 2007.

[19] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehn-
ert, I. Horn, N. Leiser, G. Czajkowski, and G. Inc.
Pregel: A system for large-scale graph processing. In
In SIGMOD, pages 135–146, 2010.

[20] J. Nishimura and J. Ugander. Restreaming graph par-
titioning: Simple versatile algorithms for advanced bal-
ancing. In Proceedings of the 19th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, KDD ’13, pages 1106–1114, New York, NY,
USA, 2013. ACM.

[21] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:
Edge-centric graph processing using streaming parti-
tions. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, SOSP ’13,
pages 472–488, New York, NY, USA, 2013. ACM.

[22] I. Stanton and G. Kliot. Streaming graph partitioning
for large distributed graphs. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’12, pages 1222–1230,
New York, NY, USA, 2012. ACM.

[23] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and
M. Vojnovic. Fennel: Streaming graph partitioning for
massive scale graphs. 2012.

[24] L. Vaquero, F. Cuadrado, D. Logothetis, and
C. Martella. Adaptive partitioning for large-scale dy-
namic graphs. In Proceedings of the 4th Annual Sympo-
sium on Cloud Computing, SOCC ’13, pages 35:1–35:2,
New York, NY, USA, 2013. ACM.

[25] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to
partition a billion-node graph. Technical Report MSR-
TR-2013-102, February 2013.

[26] S. Yang, X. Yan, B. Zong, and A. Khan. Towards ef-
fective partition management for large graphs. In Pro-
ceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’12, pages
517–528, New York, NY, USA, 2012. ACM.

	Introduction
	Methodology
	GraSP

	Evaluation
	Test Graphs
	Real-world Graphs
	Synthetic Graphs

	Scalability
	Weak Scaling
	Strong Scaling

	Quality
	Analysis

	Related Work
	Conclusion

