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ABSTRACT
Extracting useful patterns from large network datasets has become
a fundamental challenge in many domains. We present VISAGE, an
interactive visual graph querying approach that empowers users to
construct expressive queries, without writing complex code (e.g.,
finding money laundering rings of bankers and business owners).
Our contributions are as follows: (1) we introduce graph autocom-
plete, an interactive approach that guides users to construct and
refine queries, preventing over-specification; (2) VISAGE guides
the construction of graph queries using a data-driven approach,
enabling users to specify queries with varying levels of specificity,
from concrete and detailed (e.g., query by example), to abstract (e.g.,
with “wildcard” nodes of any types), to purely structural matching;
(3) a twelve-participant, within-subject user study demonstrates
VISAGE’s ease of use and the ability to construct graph queries
significantly faster than using a conventional query language; (4)
VISAGE works on real graphs with over 468K edges, achieving
sub-second response times for common queries.

CCS Concepts
•Human-centered computing→ Visual analytics; •Information
systems→ Structured Query Language;

Keywords
Graph Querying and Mining; Visualization; Interaction Design

1. INTRODUCTION
From e-commerce to computer security, graphs (or networks)

are commonly used for capturing relationships among entities (e.g.,
who-buys-what on Amazon, who-called-whom networks, etc.).
Finding interesting, suspicious, or malicious patterns in such graphs
has been the core enabling technologies for solving many important
problems, such as flagging “near cliques” formed among company
insiders who carefully timed their financial transactions [27], or
discovering “near-bipartite cores” formed among fraudsters and
their accomplices in online auction sites [21]. Such pattern-finding
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Figure 1: Top: a VISAGE query seeking three similar action
films from the 1980’s along with a result, found from the Rotten-
Tomatoes movie-similarity graph (an edge connects two movies
if they are similar). Bottom: the equivalent query written in the
Cypher querying language. VISAGE’s interactive graph query-
ing approach significantly simplifies the query writing process.

process is formally called graph querying (or subgraph matching)
[29, 28].

Many graph databases now support pattern matching and over-
come the prohibitive costs of joining tables in relational databases
[31]. Specifying graph patterns, unfortunately, can be a challeng-
ing task. Users often need to overcome steep learning curves to
learn querying languages specific to the graph databases storing the
graphs.

For example, many graph databases store graphs in the Resource
Description Framework (RDF) format, which capture subject-
predicate-object relationships among objects1. These systems
support the SPARQL querying language, which is hard to learn
and use [10]. The Cypher language, designed for the recent Neo4j
graph database2, is easier to work with since its syntax more closely
resembles SQL [13, 15], but expressing relationships among nodes
can still be challenging and may require writing many lines of
code even for conceptually simple queries [14], as demonstrated in
Figure 1, which seeks a “triangle” of three similar action films from
the 1980’s [23].

1http://www.w3.org/RDF/
2http://neo4j.com/
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Figure 2: VISAGE supports many query refinement approaches like abstract querying (1-3) and example-driven querying (4-5). A
broad query (1) with only node types and structure, with the first resulting match in (2). The Coen Brothers and the film O Brother,
Where Art Thou? are starred, fixing these nodes. With the nodes starred, only matches with those nodes are displayed like (3).
Bottom-up querying or query by example starts with an example of a known pattern. The known pattern (4) coveys lots of detailed
information but is too specific to offer any other matches. In (5), Good Will Hunting is abstracted to form a new query based off the
example (for only films from the 90s).

While there has been a lot of work in developing querying al-
gorithms (e.g., [29, 28, 23]), there has been far less research on
understanding and tackling the visualization, interaction, and us-
ability challenges in the pattern specification process. Studying the
user-facing aspects of subgraph matching is critical to fostering in-
sights from interactive exploration and analysis. While early works
suggested such potential [7, 3, 25], none evaluated their ideas with
users. Hence, their usability and impact are not known.

We propose VISAGE, the Visual Adaptive Graph Engine3, which
provides an adaptive, visual approach to graph query construction
and refinement, to simplify and speed up graph query construction
(Figure 3). VISAGE performs exact graph querying on large graphs
and supports a wide variety of different node types and attributes.

Our main contributions are:
• We introduce an interaction technique for graphs called graph-

autocomplete that guides users to construct and refine queries
as they add nodes, edges, and conditions (feature constraints).
Adding too many nodes, edges, or conditions may result
in over-specification (too few results) or even a null-result
(no results found) [1]. Graph-autocomplete stops the user
from constructing null-result-queries and guides the query-
specification process.

• We design and develop a system that utilizes recent advances
in graph-databases to support a spectrum of querying styles,
from abstract to example-driven approaches, while most other
visual graph querying systems do not [7, 3]. In the abstract
case, users start with a very abstract query and narrow down
the possible results by providing feature and topological con-
straints. In the example-driven case, often called query by
example (QBE) [32], users can specify an exact pattern and
abstract from that pattern into a query of their choice. This
technique allows users to start from an example or keep a
value fixed in their query. In VISAGE, the user can star a node
to fix its place in the query and across all of the results. We
provide examples of both query-construction approaches in
the Scenario Section.

• We demonstrate VISAGE’s ease of use and the ability to con-
struct graph queries significantly faster than conventional
query languages, through a twelve-participant, within-subject
user study.

2. SCENARIO
We provide two scenarios to illustrate how users may use VIS-

AGE. The first scenario starts from a general question with a known
structure and narrows the search through query refinement. The
second scenario begins with a known example from which new
similar results are found through abstraction.

3Please see video-demo in supplementary material.

The Rotten Tomatoes Movie Graph.
Throughout this work, we use a Rotten Tomatoes4 film-actor-

director graph. The graph has 58,763 nodes: 17,072 films, 8,576
directors, and 33,115 actors. There are over 468,592 undirected
edges of three types: (1) film to film edges, based on Rotten Toma-
toes’ crowd-sourced similarity; (2) film to actor edges, showing who
starred in what; (3) film to director, showing who directed what.

Scenario 1: From Abstract to Detailed.
Imagine our user Lana wants to find co-directors who have starred

the same actor in two films. She can begin specifying her query
starting with very general terms. She right clicks the background and
chooses to add a new director node, she repeats this to add another
director, and again to add two films and an actor. She attaches the
director to the films and the films to the actor (see Figure 2.1), by
clicking and dragging from one node to the other (one pair at a
time). She clicks the search button. She gets the results in the results
list, we show only the first result (in Figure 3.2) to save space. She
likes the first result (in Figure 2.2) with the Coen Brothers, The
Big Lebowski, O’ Brother Where Art Thou?, and John Goodman.
Realizing that she enjoys the work of the Coen brothers, she stars
both director nodes and O’ Brother Where Art Thou?, making them
fixed values in the query. She performs the search again with these
values fixed. The query is now looking for any actor cast by the
Coen brothers that was in O’ Brother Where Art Thou? and any
other Coen film. She receives the result, in Figure 2.3, showing
George Clooney in Intolerable Cruelty.

Scenario 2: Building up From a Known Example.
Now consider the example-driven approach, where a user, Barry,

takes a known example and abstracts it into a new query. Barry
knows that Matt Damon and Ben Affleck both starred in Good Will
Hunting, so he draws a node for each person and one for the film,
and connects each actor to the film (see Figure 2.4). Specific nodes
can be added manually by searching for them in the node search
menu (see Figure 4.1). When a specific node is added via search, it’s
automatically starred so that its value will remain fixed in the query.
Nodes can be unstarred by clicking the star icon in the upper right
corner (see the star by Matt Damon in Figure 2.4). Because Barry
starred all the nodes in his query, searching only finds one result (if
Barry was wrong and his initial example does not exist, no results
will be shown and he will be alerted via text in the empty results
panel). By specifying the exact value of the nodes, the query has
become too specific and will need to be abstracted if Barry wants
more results. Barry then unstars the specific film Good Will Hunting,
to find any movie starring both actors (Figure 2.5). Barry can also
leverage the visualized features of Good Will Hunting to specify new
constraints based on the results (i.e., only selecting movies made in

4A movie review website. http://www.rottentomatoes.com/
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Figure 3: A screenshot of VISAGE showing an example graph query of films and actors related to George Lucas’ films. VISAGE
consists of: (1) a query construction area, where users construct graph queries by placing nodes and edges; (2) an overview popup
window that summarizes the desired features (constraints or conditions) of a query node (in green), and the features of a selected
node in a match (e.g., the film THX 1138 in blue); a results pane, which shows a list of the results returned by the query. In this
example, a user has specified a condition that the film must have a critics’ overview of “Well-rated”. The matches’ layouts (general
shape) mirror that of the original query.

the 1990’s co-starring the actor duo). He uses a visualization of the
possible constraints discussed in Section 4.1 and shown in Figure
5. Barry reissues his search and finds Dogma (among others), a
potentially exciting film for him to watch.

3. VISAGE OVERVIEW
The user interface for VISAGE is comprised of a force directed

query-graph visualization (Figure 3), a context menu that provides
an overview of features (Figure 3.2 in blue), a feature exploration
pane (Figure 5), and a results list (Figure 3.2). The graph view
shows the current state of the user’s query. Matches are found in
the background during interaction with the feature tree and query
construction, but can be fetched manually using the “Find Matches”
button at the top. Results are displayed in a popup list (Figure 3.3)

62%

3
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0%

0%

7%

31%+

+

Figure 4: (1) VISAGE supports conventional text search for
finding a node to star. (2) Node controls and the add-node
menu; the pin button fixes the node’s position in the visualiza-
tion; the star button (available only when results exist) allows
users to keep that particular node in future results; the magni-
fying glass opens the node-search menu (at 1) that allows users
to search for particular nodes. (3) The distribution of each po-
tential neighbor node type is plotted to the right of each node-
button; neighbors that will lead to over-specification are grayed
out.

which can be removed by clicking “Clear Results” at the top.
When users select a node, a blue border appears along with the

node context menu (Figure 3.2). The context menu shows the current
selected feature constraints in green (if the user wants the selected
movie to only have good ratings then they can select this constraint in
the feature tree in Figure 3.3). When a result is selected, a summary
of the current node’s features is shown in blue. If a particular node
value from the data has been starred, its value in the query is fixed
and can take only that specific value during the querying. Starred
nodes have a golden star in the upper right (Matt Damon in Figure
2.4) and an additional context menu that reminds the user that the
film is starred.

Adding new nodes is streamlined via our node tray, which is
brought up by clicking the “+” icon on an existing node or right
clicking on the background (see Figure 4.2). This menu displays
the types of nodes that, if added, guarantee at least one match in the
underlying network. Each node shows a pin, a star and a magnifying
glass when moused over. The pin spatially pins the node and the
star allows users to star the node, keeping it constant in the query.
The magnifying glass opens the node search menu, in Figure 4.1,
which allows users to search for particular nodes via text. Users
can quickly and easily add known values and pin them; facilitating
QBE-like query construction.

VISAGE Querying Language.
VISAGE allows the user to form complex graph queries, where

the nodes can be as abstract as a wildcard or as constrained as
taking a single value (recall the scenario with the Coen brothers in
Figure 2). Graphs with a known type, for example a film, can have
any number of additional constraints added to them; limiting the
possible matches in the underlying dataset. The feature-tree allows
users to explore hierarchical and non-hierarchical features (for both
categorical and continuous variables).

4. DESIGN RATIONALE

Supporting Expressive Querying: Abstract to Spe-
cific.

Graph querying requires the user to specify a group of nodes and
their relationships; however, the constraints placed on the nodes can
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range wildly, from specific to abstract (e.g., a wildcard node of any
type). A key design goal was to allow users to express their queries
ranging from abstract to very specific. Users may start from known
examples and abstract based off of the features of their example.

We are able to leverage the internal capabilities of Neo4j in terms
of query conditions and indexing to support more complex queries.
We support true wildcards (which can take on any node type and
value). We use indices to support constant-time lookup for all
starred nodes. Conditions are added by clicking on that value in the
feature hierarchy. Users are free to add as many as they like. Within
each feature (whether flat or hierarchical), we employ the logical or
operation for constraints (i.e., year = 1997 or year = 1998). Across
the features, we use a logical and for the constraints (i.e., genre =
horror and year = 1988).

4.1 Improving Visual Query Refinement: Au-
tocomplete

Graph autocomplete has two primary goals (1) keeping the user
from making queries with no results and (2) helping them understand
the features of the matches of their query during refinement.

Structural Guidance.
When a user submits an over-specified query (one that has too

few or no matches), they must return to their query and refine it
until they reach a suitable level of specification. To help avoid this,
we adapt the query construction process based on the query the
user is constructing. VISAGE directs the user’s query construction
towards results by providing critical information about possible
nodes and their features. We have created the first graph-querying
autocomplete, which works on node types. We want to limit the
types a nodes users can add so that their query always has at least
one result. This guides the user in the direction of queries that are
rich in matches and away from over-specification and null-results
[1].

We achieve type- or structure-autocomplete by constraining the
possible-neighbor options in the new node menu. By querying in
the background we determine which types of newly added nodes
and edges will result in matches and which won’t. VISAGE displays
this data by desaturating the add node button. This way a user can
immediately see which types of nodes are available to them. In the
case of truly massive graphs, background querying for node-types
may be too slow. In this case, we use first-k-sampling to guide the
user. We use the first k-results of the current query to determine the
feasibility and distribution of potential new nodes given the current
query. The samples are visualized in the bar graph to the right of
the node-buttons (Figure 4.1).

Feature Guidance.
Graph-autocomplete also works in the feature space. We do this

by visualizing the distributions of different node-attributes, from a
sample of the results, of the current query. This approach provides
users with detailed information about how the features (of their cur-
rent queries) are distributed. With knowledge of different attributes,
users are able to better understand how the results fill out the feature
space. These data provide a visual cue that indicates how a new
condition will change the number of results.

We chose to visually encode the feature frequencies in the edges
of the feature-tree with edge-width and saturation (Figure 5.2). By
adding constraints with sparser features (thin, light lines in Figure
5.2), users will quickly decrease the number of matches. If users
choose denser attributes they will constrain their search less, keeping
more of the results. The feature tree also promotes abstraction in
hierarchical attributes (Figure 5.3), because it is straightforward to

2

1

3 ***
****
*****

Figure 5: To investigate the feature space, VISAGE visualizes
node features with a tree view. Hierarchical node features can
be clicked to hide or show levels of the hierarchy (3). The edges
denote the density of the target feature in the current results.
The darker edges in (2) mean more results have that attribute
value. When a user adds a condition by clicking a node it is
highlighted in green, as in (3). If the current node is a result or
a starred node, that nodes attributes will be highlighted in blue.

trace from one constraint up to the parent constraint. For example,
instead of looking only for films from 1993, the user can move up
the hierarchy seeking films from the 1990’s. Feature-autocomplete
gives users the summary feature information needed to narrow their
search without having to repeatedly go back and forth from query
to results.

5. IMPLEMENTATION
VISAGE uses a client-server architecture (Figure 6) that separates

the front-end interactive visualization (client) from the backend
graph matching and storage (server). We have designed VISAGE
to be independent of its backing graph database. VISAGE fully
supports Neo4j [19]. Currently, it also partially supports SPARQL,
with full support in the near future. VISAGE’s web client (Javascript
and D3) and server (Python) can run smoothly on the same com-
modity computer (e.g., we developed VISAGE on a machine with
Intel i5-4670K 3.65GHz CPU and 32GB RAM). Optionally, for
larger graphs, the server may be run on a separate, more powerful
machine.

To fetch results of a user’s query, we convert and parse the visual
query into a compact format that we pass off to the DB modules
which convert the parsed query into the necessary languages for each
graph database. Once results are returned, we calculate summary
statistics with the metadata extractor in Figure 6, which are the input
for graph-autocomplete and represent the results of the current query.

Parsing A Graph Query.
When looking for matches of a query, if the starting node has very

few matches in the graph, the search space is reduced and fewer
comparisons are needed. The effect can be enormous, reducing
a multiple minute query down to sub-second times. Because the
node-constraints can vary from completely abstract (like a wildcard)
to a single specific node, we have designed VISAGE to partition the
graph queries into pieces. Our first step is to rank the nodes by the
number and severity of their constraints. Starred nodes are parsed
into subqueries first. VISAGE then ranks the remaining nodes by
number of constraints. The entire parsing can often be completed in
a few milliseconds or less.

275



Figure 6: VISAGE uses a client-server architecture. The client
visualizes the query and results. The server wraps a graph
database, e.g., Neo4j, RDF database; additional databases can
be added via new parser output modules. The metadata ex-
tractor creates summarization statistics for autocomplete. VIS-
AGE’s search functionality for finding specific nodes is sped up
using full-text-search indices.

6. USER STUDY
To evaluate VISAGE’s usability, we conducted a laboratory study

to assess how well participants could use VISAGE to construct
queries on the Rotten Tomatoes movie graph discussed earlier. We
chose a movie graph, because the concept of films, directors, etc.,
would be familiar to all participants, so that they could focus on
VISAGE’s features. We asked participants to build queries to find
interesting graph patterns derived from prior graph mining research
[17, 23, 8]. We compared the time taken forming queries between
VISAGE and Cypher; we chose Cypher for its resemblance to SQL
and ease of use. We chose Participants were not informed which
system, if either, was developed by the examiner. We are not able to
compare with GRAPHITE [7], as it is not publicly available.

6.0.1 Participants
We recruited 12 participants from our institution through adver-

tisements posted to local mailing lists. Their ages ranged from 23
to 41, with an average age of 27. 5 participants were female the
rest were male. All participants were screened for their familiarity
with SQL. Participants ranged in querying skills; three had prior
experience with Cypher. Each study lasted for about 60 minutes,
and the participants were paid $10 for their time.

6.0.2 Experiment Design
Our study uses a within-subjects design with two main conditions

for completing tasks: VISAGE and Cypher. The test consisted
query tasks which were divided into two sections (see the Task
section). Every participant completed the first section of tasks in
one condition, and the second set of tasks in the remaining condition.
The order of the conditions was counterbalanced. We generated
matched sets of tasks, Set A and B, each with 5 tasks to complete.
The tasks ranged from easy to hard and were counterbalanced with
each condition, to even out unintended differences in difficulty
among the tasks. We used two sets of tasks to ensure that participants
did not remember their solutions between sets.

6.0.3 Tasks
We created the tasks based on an informal survey of interesting

patterns from common questions people formed when exploring
Rotten Tomatoes data and from prior graph mining research [17, 23,
8]. The tasks in Task Set A (shown in Figure 7) were:

1. Find films similar to any film from 1993.

Figure 7: VISAGE user study tasks. VISAGE queries shown on
the left with their corresponding multi-line Cypher queries on
the right.

2. Find an actor and a director for any drama film.

3. Find an actor starred in 3 films: romance, comedy, and action.

4. Find 3 similar action films, where one is from the 80’s, one
from the 90’s, and the last from the 00’s.

5. Find co-directors who made at least three films together, star-
ring the same actor, where one of the films was from the 90’s.

The difficulty of each query increases from task 1 through 5. We
ranked the difficulty of each task based on the amount of Cypher
code and number of nodes, edges, and constraints needed. The italic
values shown above were the elements that differed between the two
task sets (the order remained the same across both sets). Our hy-
pothesis was that Cypher and VISAGE would achieve approximately
similar performance for easy queries and VISAGE would achieve
shorter task completion times for harder queries.

Task completion time was our dependent measure. Task comple-
tion time could be affected by: (1) Software – VISAGE or Cypher;
(2) Task Set – the Task Set A or B; (3) Software Order – which
software was used first. Using a Latin square design, we created 4
participant groups (since all subjects would do both software sys-
tems). We randomly and evenly assigned the participants to the
groups, e.g., one group is (VISAGE + Task Set A) then (Cyper +
Task Set B).

6.0.4 Procedure
Before the participants were given the tasks, they were provided

with instructions on the software that they would be using as well
as information about the data set they would be exploring. For the
Cypher querying language, we offered a tutorial for starting Cypher
tailored to our dataset. For VISAGE we provided an overview of VIS-
AGE’s interface, how to construct queries, and how our tool would
work. The participants were welcome to ask clarifying questions
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User Study Results for Visage & Cypher
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Task 2

Task 3

Task 4

Task 5
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Average Task Times (s)
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Learnable

166166

197197

4747

6464

7676

4747
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2626

127127

8888

8080
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Figure 8: Average task completion times and likert scores for
VISAGE (green) and Cypher (yellow). VISAGE is statistically
significantly faster across all tasks. The error bars represent
one standard deviation.

during these introductory periods.
Once demoed we moved on the the first block of tasks, where

we instructed the participants to work quickly and accurately. They
had 5 minutes to perform each task and could only move to the next
one if they correctly completed the current task or ran out of time.
After each task, the participant was given the next task’s instruction
while the system was reset. Each task was timed separately. If
a participant failed to finish a task within the allotted 5 minutes
(300 seconds), the experimenter stopped the participant, marked that
task as a failure, and recorded 300s as the task completion time (to
prevent participants from spending indefinite amounts of time on
tasks).

Once participants had completed the first set of tasks, they were
provided the next set. At the end participants completed a ques-
tionnaire that asked for subjective impressions about each software
system.

6.1 Results

6.1.1 Quantitative Results
The task completion times were analyzed using a mixed-model

analysis of variance with fixed effects for software, software order,
task set, and a random effect across participants. This technique is
used to analyze within-subject studies and improves over conven-
tional ANOVA, because error-terms are also calculated per-subject
[18].

We measured the task completion time for the effects over all
possible combinations of software, software order, and task set.
The only statistically significant effect was software, suggesting
a successful counterbalancing of software order and the equality
of the difficulty of the two task sets. Figure 8-left demonstrates
the average time per task for the study. The software effect was
significant across all tasks: task 1 (F1,5 = 27.16, p< 0.0004), task 2
(F1,5 = 49.76, p< 0.0001), task 3 (F1,5 = 33.23, p< 0.0002), task
4 (F1,5 = 25.88, p < 0.0005), task 5 (F1,5 = 42.84, p < 0.0002).
Participants were significantly faster when constructing queries in
VISAGE than in Cypher. Only one participant failed to complete
task 5 in the allotted 5 minutes (using the Cypher software); the
rest succeeded in all tasks. This datum is partially responsible for
the high variance in the task 5 (see Figure 8-left - Task 5). Using
VISAGE, participants were able to construct task 5 slightly faster
than task 4 (see Figure 8-left). Adding new nodes in VISAGE is
faster than specifying feature constraints; task 4 has a large number
of constraints while task 5 has a large number of nodes and edges.
We do not see this in Cypher task 4 and 5, because adding new edges,

nodes, and constraints all take similar amounts of time. Overall, the
average difference in task times between VISAGE and Cypher was
statistically significant (F1,5 = 37.38, p < 0.0005); this represents
an average speedup of about 2.67× when using VISAGE.

6.1.2 Subjective Results
We measured several aspects of both conditions using 7-point

Likert scales filled out at the end of the study. Participants felt that
VISAGE was better than Cypher for all the aspects asked about (see
Figure 8-right). The participants enjoyed using VISAGE more than
a querying language and additionally found that our system was
easier to learn, easier to use and more likeable overall; although this
is a common experimental effect, we find the results encouraging.
Several participants found that the visualization of the query greatly
improved the overall completion of the tasks.

6.2 Discussion and Limitations
The results of our user study were positive, both qualitatively and

quantitatively. This suggests that VISAGE’s visual representation
of graph queries using graph autocomplete is faster than typed
querying languages. We believe that VISAGE achieves these better
times by: (1) streamlining the process of adding nodes and edges; (2)
autocompleting partially-complete queries, which adaptively guides
the user away from null-results; (3) shielding users from making
typos and mistakes during the construction of their queries.

Adding nodes and edges in traditional querying systems often
requires creating a variable for them, which must be remembered in
order to specify the structure and attributes related to it. The user
may have to type the name a single node repeatedly in order to spec-
ify the actual structure and in the case of large queries may confuse
the names of nodes. VISAGE’s visual representation simplifies this
considerably. Typos and mistakes are common when writing a long
and complicated query by hand. By programmatically generating
queries based on users’ constructions, VISAGE avoids the delay
incurred by typos.

We observed two general strategies that participants employed
when constructing queries: (1) entities first, then relationships, and
(2) iterative construction. Participants in the first group would often
add all the entities from the task first, then wire up the relationships.
Other participants followed a more iterative approach, wherein they
would start with a single entity and build up from it (reminiscent of
a breadth-first search). No statistical significance was found in the
time taken for each general strategy.

When users construct queries with null-results, a traditional sys-
tem requires the user to wait while the search is performed. During
the study two of the users stated that the autocomplete helped remind
them about the underlying structure of the network, saving time dur-
ing their tasks. We help guide the user away from this case with
our graph-autocomplete, so that users spend less time debugging
queries that do not produce results. Because we sample results for
graph-autocomplete, VISAGE may be able to retrieve a small sample
of the possible results in real time, leading to a potentially skewed
samples. This limit is dictated by the underlying graph database and
scales accordingly.

While the results of our evaluation was positive, the need for the
participants to build queries was created by the tasks; however, in
real-world scenarios, such needs would be ad hoc. For example,
what kind of exploratory query patterns do people create? We plan
to study such needs, as well as how VISAGE can handle those kinds
of tasks, in less controlled situations.
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7. RELATED WORK

Graph Visualization and Query Languages.
Many tools and techniques have been developed to facilitate dis-

covery in graphs; Herman et al. [11] cover much of the initial work
in graph visualizations. Static [30] and dynamic [2] graph visualiza-
tions are quickly growing areas; as well as graph sensemaking [22].
Our work extends this body of research by providing an adaptive,
visual approach to graph query construction and refinement.

Database researchers have proposed graphical query languages
to help users specify queries against various forms of databases.
The seminal work by Zloof [32] introduces the Query By Example
language (QBE). QBE allows users to formulate queries by filling
out relational templates, constructing “example queries”, rather than
writing traditional SQL queries. Other examples include PICASSO
[16], which allows users to pose complex queries without knowing
the details of the underlying database schema, and the concept
of dynamic queries [1, 26], which allow users to create relational
queries with graphical widgets to provide visual display of actions.
Catarci et al. [5] provide a survey of the body of work focusing on
relational databases. More recently, researchers proposed graphical
query languages for XML [6, 20] and RDF [12] databases as well.
Our work builds upon much of this previous work; however, our
focus is on the visual aspect of query construction and refinement
as well as displaying results without requiring familiarity with a
data-model like XML or RDF.

Approaches for Graph Querying.
The problem of querying a large graph given a subgraph of in-

terest, also known as subgraph matching, has been investigated in
several recent works. Tong et al. propose G-Ray [29], which is a
best-effort inexact subgraph matching approach that supports node
attributes. The MAGE algorithm [23] improves G-Ray by exhibiting
lower latency, supporting attributed edges, wildcards, and multiple
attributes. Tian and Patel propose TALE [28], which is an index-
based method that incorporates the local graph structure around
each node into an index structure for efficient approximate subgraph
matching. Other systems have solved this problem, like OntoSeek
[9], which utilizes inexact graph matching based on linguistic ontolo-
gies over a large collection of keywords called WordNet. While we
currently utilize Neo4j’s graph querying functionality, our approach
can very well work with any of the advanced techniques in this line
of research. Recently Cao et al. introduced g-Miner, an interactive
tool for graph mining that supports template matching and pattern
querying [4]. VISAGE bridges querying and pattern matching, by
offering multiple levels of abstraction, where g-Miner does not.

Visual Graph Querying.
A few systems have been proposed for visually querying large

graphs. One example is GRAPHITE [7], which allows users to
visually construct a graph query over categorically attributed graphs.
It uses approximate subgraph matching and visualizes the results.
GRAPHITE proved that visual graph querying is possible; however,
our focus is on the query refinement process (with richer querying
possibilities than GRAPHITE, which only supports a single cate-
gorical attribute per node). More recently, researchers proposed
VOGUE [3], which is a query processing system with a visual in-
terface that interleaves visual query construction and processing.
VOGUE exploits GUI latency to prune false results and prefetch
candidate data graphs through special indexing and query process-
ing schemes. Our work differs from this body of work by enabling
users to explore the feature space with a tree-based view and guiding

users as they construct their graph query with graph-autocomplete.
Previous works on visual graph querying [3, 7, 24], did not focus
on addressing the interaction and visualization challenges, which is
another focus of our work here.

Graph Summarization.
Another line of research focuses on “summarizing” a given graph.

Koutra et al. [17] propose VoG, which constructs a vocabulary of
subgraph-types like stars and cliques. Dunne and Shneiderman [8]
present motif simplification, which is a technique for increasing
the readability of node-link network visualizations by replacing
common repeating network motifs with easily understandable motif
glyphs (e.g. fans and cliques). Schreiber et al. used this idea
with MAVisto, a tool for the exploration of motifs in biological
networks [25]. We do not focus on graph summarization in this
paper; however, many of the patterns or motifs serve as the basis for
our user study tasks.

8. CONCLUSION & FUTURE WORK
In this work we presented VISAGE, a system built using recent

innovations in graph-databases to support the visual construction
of queries, from abstract structures to highly conditioned queries.
VISAGE relies on an interaction technique for graphs called graph-
autocomplete that guides users to construct and refine queries, pre-
venting null-results. We hypothesized that visual graph querying
with VISAGE would be faster for generating queries than the Cypher
querying language. We demonstrated this with a twelve-participant,
within-subject user study. The study showed that VISAGE is sig-
nificantly faster than conventional querying for participants with or
without familiarity to Cypher.

VISAGE offers users a visually supported, code-free solution to
graph querying that helps guide the user towards queries with results.
Currently we do not support graph subqueries, unions and intersec-
tions (of graph results), aggregations, shortest-paths, and edge at-
tributes. This work has revealed additional challenges and potential
new questions for the community. How can inexact or approximate
querying be used to aid query construction and refinement; and how
best to visualize the uncertainty inherent in approximate results [22,
30]? We hope VISAGE will spur continued interest in visual graph
querying.
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