978-1-5090-6167-9/16 $31.00 © 2016 IEEE
DOI 10.1109/ICMLA.2016.195

2016 15th IEEE International Conference on Machine Learning and Applications

Uncovering the Landscape of Fraud and Spam 1n
the Telephony Channel

Aude Marzuoli, Hassan A. Kingravi, David Dewey, Robert Pienta
Pindrop
Atlanta, GA, USA
Email: amarzuoli, hkingravi, ddewey, rpienta@pindrop.com

Abstract—Robocalling, voice phishing, and caller ID spoof-
ing are common cybercrime techniques used to launch scam
campaigns through the telephony channel, which unsuspecting
users have long trusted. More reliable than online complaints,
a telephony honeypot provides complete, accurate and timely
information about unwanted phone calls across the United States.
Our first goal is to provide a large-scale data-driven analysis of
the telephony spam and fraud ecosystem. Our second goal is to
uniquely identify bad actors potentially operating several phone
numbers. We collected about 40,000 unsolicited calls. Our results
show that only a few bad actors, robocallers or telemarketers, are
responsible for the majority of the spam and scam calls, and that
they can be uniquely identified based on audio features from their
calls. This discovery has major implications for law enforcement
and businesses that are presently engaged in combatting the rise
of telephony fraud. In particular, since our system allows end-
users to detect fraudulent behavior and tie it back to existing
fraud and spam campaigns, it can be used as the first step
towards designing and deploying intelligent defense strategies.

I. INTRODUCTION

Telephony spam and fraud is a major concern because the
telephony channel is less secure than most other communi-
cation channels. While email spam has led to a multi-billion
dollar anti-spam industry [1], phone spam and fraud are less
understood. Little is known about the telephony spam and
fraud ecosystem, its tactics and value chain. Attacks on the
telephony channel have recently increased, and this trend can
be attributed to the availability of Voice over Internet Protocol
(VoIP). Automated VoIP calls can be made at no or low cost at
scale, from the United States or overseas. Caller ID spoofing
occurs when a caller deliberately falsifies the information
transmitted to a Caller ID display to disguise their identity.
Spoofing and robodialing are easily accessible techniques. A
robocall is defined as a phone call that uses a computerized
autodialer to deliver a pre-recorded message. Cybercriminals
are already exploiting the telephony channel to craft large-
scale attacks such as voice phishing (vishing) [2]. An attacker
can configure a VoIP software [3] to dial a group of phone
numbers and play prerecorded outgoing calls, also allowing
the recordings to be emailed upon completion. People have
long trusted the telephony channel, making attacks relying on
the telephone as a resource more successful [2]. The majority
of the population can be more easily reached via phone than
any other communication means. Telephony has become the
weak link even for web security. For instance, cybercriminals

regularly exploit social engineering over the phone to reset
online banking credentials to steal money.

Millions of complaints from citizens have been sent to the
Federal Trade Commission (FTC) about unwanted and fraud-
ulent calls. Websites such as 800notes [4] receive thousands
of online complaints about unwanted calls daily. Large-scale
phone scams now regularly make news headlines and are
widely reported to the FTC. The most famous ones include:
scam 419, where the victims are convinced to send cash
upfront by promising them a large amount of money that they
would receive later if they cooperate [5]; the tech support
scam, where consumers were tricked into paying for the
removal of bogus viruses on their computers and giving the
scammers remote access to their computers [6]; swindlers who
overload emergency dispatch centers with automated calls [7].

Research regarding telecommunications fraud has long fo-
cused on exploiting very large data sets of all users, both
genuine and fraudulent, of the telephony channel. Becker et
al. [8] provided an overview of fraud detection at one of the
top U.S. carriers. Weatherford [9] used neural networks to
create long-term patterns of user behavior. Onderwater et al.
[10] exploited outlier detection techniques on user profiles to
identify fraudsters. Tseng et al. [11] studied unusual traffic
patterns of millions of users, extracting features from patterns.
The main drawback of these techniques is that they require
access to millions of records of phone calls. Such records
pose big imbalance problems since most phone calls placed
by users are not fraudulent. Our proposed approach with a
telephony honeypot is much simpler, avoids privacy concerns
when providing all records of phone calls for millions of users,
and has significantly less imbalance problems.

In previous research [12], the information obtained on a call
to a telephony honeypot included the source phone number
(which may not be a legitimate or a valid number because
of spoofing), the destination phone number, and the time of
call. However, it did not provide insight on the telephony
fraud ecosystem. No one knows a priori whether there are
thousands or just a few bad actors perpetrating attacks on the
telephony channel. Contrary to other communication channels,
very little information on a phone call is available besides
the source phone number, the time of the call and sometimes
its duration. Spammers and fraudsters using emails or social
network platforms [13] usually leave a link to a website and
semantic information is readily available in the corresponding
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email, tweet or SMS, including keywords. The sheer volume
of unwanted calls combined with the fact that source phone
numbers cannot be trusted (because of spoofing) makes the
identification of telephony fraud challenging.

This paper establishes data-driven ground truth regarding
the landscape of telephony spam and fraud, and gather threat
intelligence in order to later design detection and defense
mechanisms. The honeypot can be modeled as a bipartite
graph, with source phone numbers as start nodes on one
side, destination phone numbers as end nodes on the other
side, and edges representing phone calls. We seek to uncover
the hidden network between source phone numbers, reflecting
the fact that one bad actor can be operating several source
phone numbers. In this paper, we exploit the semantic in-
formation obtained from call recordings. Leveraging state-of-
the-art audio transcription tools, in combination with natural
language processing and clustering algorithms, clusters of calls
playing identical recordings are extracted and automatically
labeled. We extract the audio features [14] of the calls in each
cluster and feed them to classifiers to create ‘“phoneprints” of
distinct telephony infrastructures. This technique overcomes
issues with spoofed or restricted source phone numbers. The
main contributions of this paper are outlined below:

o We provide a data-driven analysis of the telephony fraud
and spam ecosystem.

« After collecting about 40,000 call recordings, we demon-
strate that only a few bad actors are responsible for the
majority of telephony spam and fraud, and that they can
be uniquely identified by their audio signature.

The development of this system and our analysis can help
businesses design adaptive defense strategies and provide law
enforcement with threat intelligence that may allow for the dis-
ruption and potential prosecution of bad actors. This paper is
structured to describe each core component of our processing
pipeline. Section II introduces the telephony honeypot used,
the call recordings collection and transcription. In Section III,
call transcripts are used as input for a topic model and a
similarity metric is computed to compare transcripts. In Sec-
tion IV, spectral clustering is applied to transcript projections
on the topic space. Combined with calling patterns, clusters
of call transcripts provide insight on several spam and fraud
campaigns, and the techniques used by fraudsters. In Section
V, call audio features and clusters of call transcripts are used
to train classifiers that can identify distinct bad actors. Section
VI draws the conclusions of the paper and provides future
research perspectives.

II. DATA COLLECTION

In this section, we provide an introductory analysis of the
traffic observed in the honeypot in 2015. We contrast the
results with a set of online comments on unwanted calls
collected in 2015. Finally, we present an overview of the data
set collected from the honeypot, which is used in the remainder
of the paper.

A. Overview of the Honeypot

The honeypot contains about 8,000,000 calls received in
2015 from about 880,000 distinct sources to about 80,000
distinct destinations. 39% of sources only called once, and
29% of sources only twice. Therefore obtaining historical
information on a given source to apply machine learning
techniques is very challenging. Some statistics are provided in
Table I. During most of 2015 (except for a few weeks when we
conducted experiments), calls were never answered. The calls
received are entirely unsollicited, and our destination phone
numbers never placed any calls. The distribution of calls per
source phone number is shown in log-log scale in Figure 1.
This plot, along with the fact that the median number of calls
is lower than the average, suggests a power law or log-normal
distribution, with a heavy tail.

B. Online comments

Earlier work by Gupta et al. [12] highlighted the limitations
of online complaints data sets, and showed that a telephony
honeypot provides three essential features needed to improve
the quality of phone abuse intelligence. The first feature
is completeness: quantitative and semantic information on a
phone call are needed. The second feature is accuracy: a
telephony abuse report should describe who made the call,
the time at which the call was made, and information about
the call suggesting it may be abusive. Accuracy of such a
report means that the source and time are recorded correctly
and its description is objective and supports why it is abusive.
Due to the open nature of online forums, complaints on it
are not limited to telephony fraud. This results in noisy data
where some complaints do not pertain to telephony abuse.
The noisy and often conflicting nature of user reports impacts
the accuracy of such datasets. The third feature is timeliness:
timeliness indicates how soon a complaint is filed after an
abuse call is received. Generally, abuse calls and the phone
numbers from where they come are reported several days
after the time when the first call was received, and generally
because people have been called multiple times. However, to
understand the advantages and added value of a telephony
honeypot, a set of online comments is examined.

In 2015, 660,145 online comments were scraped from the
top five websites about phone numbers complaints, report-
ing 74,000 source phone numbers as unwanted callers. The
number of comments per phone number is shown in Figure 1
in log-log scale, highlighting the fact that the distribution is
skewed. Some statistics are provided in Table I.

TABLE I. Statistics regarding the number of calls to the
honeypot and the number of online comments.

Data Total Nb of | Average | Median Max
set volume | sources | volume | volume volume
per source
Honeypot | 8,000 k | 880 k 9 2 21,329
Online 660 k 74 k 9 2 2,156
Comments

854



The honeypot and the online comments are both observers
of the telephony world, both reflecting a necessarily partial
view of the world, so it is natural to wonder how the obser-
vations from these two sets are related. In fact, the honeypot
and the online comments set have a significant overlap: about
16,000 sources that called the honeypot in 2015 were the
subject of online comments. This represents 1.8% of sources
that called the honeypot and 21% of sources reported in
the online comments. In the honeypot, these sources placed
36% of all calls, with an average of 145 calls per source,
and a median of 21 calls per source. In the comments set,
these sources were responsible for 66% of all comments, with
an average of 26 comments per source, and a median of 7
comments per source. The sources in the intersection of these
two data sets are the tails of the calls per phone number
distribution and of the number of comments per phone number
distribution in Figure 1. Put simply, identifying the bad actors
behind 1.8% of sources in the honeypot has the potential to
address 66% of online complaints.

Figure 1 is a plot of the probability distributions of the hon-
eypot dataset and of the online comments dataset, both are very
similar and almost linear. Both distributions are fitted using
scipy in Python with a maximum estimation. The lognormal fit
is a better fit than the power law fit, and a much better fit than
an exponential. These two distributions are heavy-tailed. They
can be fitted with good accuracy as lognormal distributions,
and modeled with generative techniques. We intend to tackle
this aspect in future work to model the behavior of fraudulent
callers.
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Fig. 1: Probability distributions of the calls per source phone
number into the honeypot and the online comments per source
phone number (log-log scale).

C. Overview of the data set collected from the Honeypot

TABLE II: Overview of the data sets collected with the
honeypot.

Data set Number Number Number
collected of calls | of distinct | of distinct
recorded sources destinations
Random recordings 8,871 5,179 4,867
Targeted recordings 30,910 1,338 8,838

The first experiment that we conducted consisted of ran-
domly recording calls: over two weeks, every tenth call
to destinations from one-party consent states was recorded.
Moreover, we decided to target the tail of the distribution
of callers, who we hypothesized corresponds to the most
persistent robocallers or telemarketers. We conducted a second
experiment over three weeks: if in the past week, a source
number had called more than 10 times, it would be recorded
if it called again. These two data sets are described in Table II.
Throughout this paper, we heavily utilize both the random and
targeted recordings for our analysis and compare the results
obtained from both data sets.

Once a call is recorded, its audio is transcribed to a text
file using Kaldi [15]. Kaldi is a free open-source speech
recognition toolkit written in C++. Kaldi provides a speech
recognition system based on finite-state transducers and it
is intended for use by researchers. Transcripts are imperfect
and contain spelling and grammatical mistakes, but identical
recordings are transcribed into very similar transcripts.

The transcripts are then pre-processed before we apply
language processing techniques. To filter out recordings that
do not contain enough semantic information, stop words, such
as prepositions or adverbs, are removed from transcripts. Then,
unusual words that only appear once across all documents are
removed. Transcripts containing fewer than 3 words (i.e. very
little usable information) are discarded. The remaining words
are lemmatized (i.e. the endings of the words are removed)
and each transcript is stored as a bag-of-words.

After this initial filtering step, 3,574 calls (40%) from 1,899
sources (37%) remain for the random recordings, while 16,378
calls (52%) from 1,052 sources (79%) remain for the targeted
recordings. This is the first indication that targeting heavy
callers provides less noisy data. Robocallers are, by definition,
playing a prerecorded message, and telemarketers read from a
script, and they are the heaviest callers.

III. DETECTION OF FRAUD AND SPAM TELEPHONY
CAMPAIGNS

In this section, we use the transcripts from the honeypot
recordings presented as input to a topic model, to perform a
dimensionality reduction.

In machine learning and natural language processing, topic
models are algorithms used to analyze large volumes of
unlabeled text documents [16]. They uncover patterns and
thematic structures in document collections. Commonly used
topic models include Latent Semantic Indexing (LSI), Latent
Dirichlet Allocation (LDA) and Non-negative Matrix Factor-
ization (NMF). All three were tested on the transcripts corpus
and LSI provided the most intuitive and consistent results.
LSI [17] is a dimensionality reduction technique that projects
documents and document queries into a space of smaller
dimension, called the “topic space”, than the original space of
dictionary words they were expressed in. The intuition behind
LSI is that there is a set of independent underlying variables
which span the meanings behind the data. We outline the
basics behind this algorithm for completeness.
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Let the corpus be represented by a d x n weighted term-
document matrix X, where d is the size of the dictionary
(all distinct words observed in the corpus), and n is the
number of transcripts. The columns of X are the transcripts
in filtered bag-of-words form, and each term in the dictionary
is represented by a row. A Term Frequency Inverse Document
Frequency (TF-IDF) [18] local weighting function is applied
to condition the data . TF-IDF determines how relevant a
particular word is in a given document. Words that are
common in a small group of documents tend to have higher
TF-IDF values than common words across documents such
as prepositions. Define X; ;4 as the weighted term-document
matrix once the TF-IDF transformation has been applied: then
LSI is simply the singular value decomposition (SVD) of
Xtsiqr, where only the largest k singular values are kept, and
k < min(d,n): this reduction preserves the most important
semantic information in the text while reducing noise and other
undesirable artifacts of the original space of X. The n columns
of Skxkvr;ka are the new coordinates of each transcript after
dimensionality reduction. This new coordinate system helps
perform the dimensionality reduction for documents that are
not in the original corpus, instead of increasing the size of the
corpus and performing the full LSI again.

The results for each experiment are described in Table III.
The number of topics was selected with the consideration that
a smaller number of topics ensures a smoother projection space
while eliminating a large share of the noise. The first topics,
i.e. the topics corresponding to the largest singular values,
reflect the most important scams in volume.

TABLE III: Topic Modeling Inputs.

Experiment Number of | Number | Number of
transcripts | of words nonzero
entries
Random recordings 3,574 4,044 68,659
Targeted recordings 16,378 5,015 355,312

Once each transcript has been mapped to a lower dimen-
sional projection, these projections can be compared in the
space of topics. We use the cosine similarity measure between
the projections of any pair of transcripts, which is normalized
between 0 and 1, with 1 indicating identical projections.

From the pair-wise similarity scores computed across the
whole corpus, an n X n similarity matrix is constructed. The
similarity matrix obtained for both recordings experiments are
pictured in Figure 2. The darker the blue dot between row
¢ and column j, the more similar transcript ¢ is to transcript
j. The fact that the diagonal of the matrix is dark blue is
expected, since each transcript is maximally similar to itself.

IV. CLUSTERING OF SIMILAR TRANSCRIPTS

In the previous section, we computed pair-wise similarity
between the transcripts’ projections in the topic space. In this
section, we identify clusters of identical transcript projections,
whose calls are playing the same recording . Initially, we tried
clustering on transcripts directly, instead of clustering on pro-
jections in the topic space. However, because many transcripts
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random tran- (b) 14,128 targeted tran-

scripts.

(a) 3,040
scripts.
Fig. 2: Similarity matrix. No pattern is easily distinguishable
at this point, hence the need for clustering.

from different spam and scam campaigns use identical words,
it was not effective, hence the extra step taken to perform a
dimensionality reduction before clustering.

Clustering algorithms address the classical unsupervised
learning problem of finding a partition for a given set of items.
There are often many ways to partition the data. Spectral clus-
tering [19] is a powerful non-parametric technique to uncover
structure in data using the spectrum of a pairwise similarity
matrix. The algorithm takes as inputs S, the similarity matrix,
and k, the number of clusters wanted. Spectral clustering
works well in practice because the graph Laplacian encodes
geometric information relevant to cluster similariy, and its
spectral decomposition induces a lower dimensional space
upon which partitional clustering algorithms such as k-means
can infer that potentially nonlinear structure.

The results of the spectral clustering on the similarity ma-
trices corresponding to the random and the targeted recordings
are shown in Figure 3. The data suggests that a set of phone
numbers are fraudulent when all their calls cluster, indicating
that all the callers are either playing the same recording or
they are humans reading from the same script. A good cluster
is a cluster with very high average intra-cluster similarity,
i.e. corresponding to a group of identical recordings. A dark
square block in Figure 3 corresponds to a subset of identical
transcripts (which are all perfectly similar to one another).
Then the corresponding source phone numbers propagating
the same scam or spam campaign behind the corresponding
calls can be identified.

In both sets, only a few clusters contain the majority of spam
and scam calls. The detailed results are presented in Table
IV. Moreover, some of the clusters in both sets of recordings
overlap and correspond to the same scam or spam calls.

TABLE IV: Proportion of transcripts in “good” clusters (clus-
ters of sufficient size for a phoneprint and high average intra
similarity).

Experiment | Nb of good | Nb of transcripts Percentage
clusters clustered of transcripts
Random 23 1,144 37%
Targeted 93 9,924 61%

One of the most prevalent scam campaigns is related to



(b) 14,128 targeted tran-
scripts.

(a) 3,040 random tran-
scripts.

Fig. 3: Similarity matrix after clustering. Each dark block
corresponds to a cluster.

Google. We found more than 10 clusters of distinct recordings
linked to Google, such as: “Our records indicate that you have
not optimize your google business listing of it is critical that
you're listing is up to date and optimize in order to be found
online press one to verify and optimize your free google listing
press nine to be removed from this list.” If the destination
answers, the scammer will then try to socially engineer the
person answering and convince them to either pay for a bogus
service or disclose personal information such as passwords
[20]. The “Optimize your Google listing scam” contains 228
recordings from 3 sources to 197 destinations, where each
source mimics the area code of the destinations it calls.

V. CLASSIFICATION OF DISTINCT BAD ACTORS

In the previous sections, traffic patterns and semantic in-
formation were extracted for a set of recordings. In this
section, audio features from each recording are used to train
classification models, in order to uniquely identify distinct
telephony infrastructures.

A. Phoneprinting

For each recording, 150 distinct features [21], including
packet loss, spectrum, and VoIP information are extracted for
the purposes of training a classification model. Experiments
were conducted with standard classification algorithms such
as random forests, gradient boosting and kernel support vector
machines (SVMs), and the latter was chosen due to its superior
performance for this task (maximizing true detection and
minimizing false acceptance rates). Recall that kernel SVMs
[22] train nonlinear classifiers by utilizing kernel functions
k(z,y) that map the data x, in R” using an implicit feature
map 1) : RP — H to a high-dimensional Hilbert space A, and
then learning a hyperplane in feature space to discriminate two
classes by maximizing the margin of separation between the
classes [23]. The kernel function completely determines the
richness of the feature space, and even though many choices
for the function exist, we chose the standard RBF kernel
due to its expressive power . We call the final classification
model using the aforementioned audio features a phoneprint.
Note that the phoneprinting process involves cross-validation
to infer the best parameters of the SVM model.
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B. Cluster phoneprinting and bad actor identification

Using spectral clustering on the similarity matrix between
transcripts, clusters of transcripts, and hence of audio record-
ings, are obtained. In this subsection, we report the perfor-
mance of phoneprinting clusters of sufficient size that have
a very high intra-cluster similarity. Phoneprinting clusters of
recordings from different source phone numbers enables us to
overcome the fact that most phone numbers only call once
or twice in the honeypot. The experiments we conducted
showed that phoneprinting clusters provides better results than
phoneprinting a phone number alone, especially for robocallers
and telemarketers. The intuition behind this is as follows: if
several calls are placed from a given phone infrastructure,
their audio features tend to be highly similar in the audio
feature space. Bad actors tend to use several distinct phone
numbers to perpetrate the same scam. Indeed, we saw in the
honeypot the exact same recording being played by several
phone numbers. Even if the caller is hiding behind several
source phone numbers, by spoofing, if he or she calls from the
same infrastructure, the audio features of the call recordings
will be highly similar. Hence, the hypothesis is that clusters
in the topic space will also tend to cluster in the audio
space, except that the semantic information associated with
the transcript space will allow for more accurate groupings.

To prove this point, audio features are extracted from
recordings associated to clusters with high similarity in the
topic space, and are systematically phoneprinted. Across more
than eighty phoneprints trained for the random and the targeted
recordings data sets: the average training TPR obtained was
72%, and the average testing FPR was 0.11%. The maximum
training TPR was 98%. Our results show that phoneprinting a
cluster may perform very well even with less than two calls
per source phone number on average. Another advantage of the
methodology developed is that it enables catching bad actors
hiding behind “restricted” or “anonymous” phone numbers,
or spoofing phone numbers. Several clusters from the random
recordings data set contained “anonymous” calls. when the
caller calls again, from any phone number, he or she will be
flagged as Jthe same bad actor by extracting the audio features
and testing them through the set of existing phoneprints.

C. Kernel PCA and Visualization of Audio Features

We can demonstrate some of the insights of the last section
by visualizing the audio features data in an approximation of
the Hilbert space H that they are mapped to for classification.
Recall that principal component analysis (PCA) can be used
to create visualizations of data in high dimensions: given zero-
mean data {x;},, the covariance matrix C' = %; Zf;l xixl
can be diagonalized into principal components, and the data
can be projected to k£ dimensions capturing the largest possible
variance. We can apply a similar procedure to compute an
embedding of the audio feature data in the Hilbert space
associated to the kernel k(x,y) by using kernel PCA [24]:
here, the N x N Gram matrix K := k(z;, z;) between the data
must be diagonalized to estimate the principal eigenfunctions,
which represent the most important coordinates in 4. For a



given phoneprint, we used the RBF kernel with its chosen -~y
parameter to compute K, and then perform the embedding of
the data that generated the phoneprint.

Using the clusters extracted above, and the performance of
the associated phoneprints, examples of well-separated classes
are depicted in Figure 4. For cluster 1, several thousands of
data points in the negative class, in light blue, are grouped
into a very localized region, while the positive class occupies
a different region of the space. This shows that, in kernel
space, both classes are easily separable, as the good phoneprint
performance suggested. For cluster 139, the projections of
the audio features (in kernel space) are not easily separable
in the first three dimensions. The corresponding phoneprint
performance for cluster 139 was much lower with a TPR of
46.67% against 98.01% for cluster 1 and 91.89% for cluster
110 respectively. For lower than usual phoneprint performance,
the kernel PCA visualization helps us understand whether the
positive class or the negative class or both contain wrong
labels.
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(a) Example of good separation be-
tween classes: cluster 1.

(b) Example of poor separation be-
tween classes: cluster 139.

Fig. 4: Visualization of the first three components of the Kernel
PCA on audio features used for phoneprinting.

VI. CONCLUSION

In this paper, we provided a data-driven analysis of the tele-
phony fraud and spam ecosystem based on recordings obtained
from a telephony honeypot. We developed a technique to
exploit heterogenous aspects of the telephony ecosystem (call
recordings, audio signal, traffic pattern), by combining tools
from supervised and unsupervised learning. We recorded about
40,000 calls to our Honeypot, both randomly and by targeting
heavy callers. Our results show data-driven evidence that only
a few bad actors, operating distinct telephony infrastructures,
are responsible for the majority of telephony spam and fraud.
Moreover, only 1.8% of sources are responsible for 66% of
online complaints, and we now have techniques to detect and
identify the bad actors behind them. Our system allows end-
users to detect fraudulent behavior and tie it back to existing
fraud and spam campaigns, it can be used as the first step
towards designing and deploying intelligent defense strategies.
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