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ABSTRACT

Large graphs are now commonplace, amplifying the fundamental challenges of explor-

ing, navigating, and understanding massive data. Our work tackles critical aspects of graph

sensemaking, to create human-in-the-loop network exploration tools. This dissertation is

comprised of three research thrusts, in which we combine techniques from data mining,

visual analytics, and graph databases to create scalable, adaptive, interaction-driven graph

sensemaking tools.

(1) Adaptive Local Graph Exploration: our FACETS system introduces an adaptive

exploration paradigm for large graphs to guide user towards interesting and surprising con-

tent, based on a novel measurement of surprise and subjective user interest using feature-

entropy and the Jensen-Shannon divergence.

(2) Interactive Graph Querying: VISAGE empowers analysts to create and refine

queries in a visual, interactive environment, without having to write in a graph querying

language, outperforming conventional query writing and refinement. Our MAGE algorithm

locates high quality approximate subgraph matches and scales to large graphs.

(3) Summarizing Subgraph Discovery: we introduce VIGOR, a novel system for sum-

marizing graph querying results, providing practical tools and addressing research chal-

lenges in interpreting, grouping, comparing, and exploring querying results.

This dissertation contributes to visual analytics, data mining, and their intersection

through: interactive systems and scalable algorithms; new measures for ranking content;

and exploration paradigms that overcome fundamental challenges in visual analytics. Our

contributions work synergistically by utilizing the strengths of visual analytics and graph

data mining together to forward graph analytics.



CHAPTER 1

INTRODUCTION

The volume of information available today is enormous and constantly increasing. People

use data of all kinds to make sense of the world. Insight extracted from data are essential for

planning, decision making, and understanding our lives. Progress in education, science, and

technology requires us to make sense of and gain insight from overwhelming quantities of

data. From a user’s or analyst’s (we will use them interchangeably) perspective, the main

challenge of sensemaking lies not in storage, or computational efficiency, or even large

scale data processing. It lies in how to best augment an analyst’s limited cognitive faculties

to make sense of a large data corpus.

Significant amounts of data can be captured and stored as a graph; capturing the com-

plex relationships among entities. Understanding networks has become a vital challenge in

many domains from biological systems, network security, to finance (e.g., finding money

laundering rings of bankers and business owners). The focus of this dissertation is on im-

proving sensemaking process for graphs or networks. Data mining and machine learning

research have developed powerful, automated, and scalable graph algorithms; however,

these typically do not support interaction, nor are they designed specifically for sensemak-

ing. Conversely, information visualization, which excels in interaction and developing user

insight, often does not scale to the enormous information-rich networks we see today. In

this dissertation, we combine visual analytics principles, modern graph visualizations, and

new scalable graph exploration techniques.

Specifically, we have designed and developed a series of algorithms, novel approaches,

and systems that support the investigation of large network datasets. Our work demon-

strates new ideas that synergistically improve the speed and ease with which analysts can

draw insight from network data.
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1.1 Thesis Overview

Our work addresses three important research questions, summarized in Figure 1.1: (1)

How can we guide analysts in locally exploring million-edge graphs? (2) after exploration,

How can we formulate and find graph patterns without writing complex querying code?

(3) How can we summarize and explore subgraph matches? We organize our research into

three inter-related research thrusts, where each addresses one research question with: tools,

methods, and systems (clicking a Thrust block below will jump to its text).

Adaptive Local 
Graph Exploration

Thrust I FACETS  
    

Adaptive Neighbor Filtering
Dynamic Neighborhood Summarization
Metrics for User Surprise and Interest

System & Pilot Study

VIS15, SDM17

Ch. 3 

How can we locally explore large graphs?

How can we create queries and perform graph pattern matching?

Constructing, Refining, and 
Performing Graph Queries

Thrust II VISAGE
Graph Autocomplete

Visual Querying Language
Interactive Query Refinement

System & User Study

IUI15, AVI16, SIGMOD17

Ch. 5 
MAGE

Approx. Matching Algorithm
Scalable Approach

System

BigData14

Ch. 4 

How can we summarize & explore subgraph matches?

VIGOR
Feature-aware Subgraph Embedding

Exemplar Based Exploration and Filtering
Interactive Feature and Value Summarization

System & User Study

Visualizing and Exploring
Subgraph Matches

Thrust III
VIS16, VAST17 (Under Review)

Ch. 6 

Figure 1.1: Our work is composed of three thrusts and four systems, motivated by important
research questions shown in light gray above each thrust (clicking a thrust block below will
jump to its place in the dissertation).
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1.2 Thrust I: Adaptive Local Graph Exploration

Large graphs pose a significant challenge to visual analytics approaches, because the large

number of nodes and edges in a graph often visually occlude each other (Figure 1.2). Even

modest sized graphs are hard to utilize as a starting point for exploration. We propose to

use adaptive local exploration to show only a subset of the whole graph and overcome the

challenges of visual scale when facing massive graphs.

In Thrust I, we guide analysts towards nodes and node-neighborhoods with the

FACETS system (pictured below in Figure 1.3 and covered in Chapter 3); enabling an-

alysts to adaptively explore large million-node graphs from a local perspective. Its main

features include:

• Supplying local, dynamic summarization for node-neighborhoods. Drawing an

entire network often leads to incomprehensible hairballs (see Figure 1.2). By filtering

out less relevant nodes from a neighborhood and summarizing the filtered content

locally, analysts can quickly explore larger areas and extract important patterns.

• Modeling user interest and surprise. By only showing the parts of the graph that

would be more interesting or surprising to the user, the visualization does not get too

complex while still remaining interesting. Importance, surprise, and user-interest are

all vital aspects of discovery, so we blend them into the results that are shown first

to the user. FACETS uses Jensen-Shannon divergence over information-theoretically

optimized histograms to calculate the subjective user interest and surprise scores.

Figure 1.2: Visually overloaded global graph visualizations or hairballs from: the largest
connected component from the Caltech Facebook social network [1]; a music-genre simi-
larity graph [2]; and a visualization of the Steam social gaming network [3].
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Figure 1.3: The Rotten Tomatoes movie similarity graph shown using conventional spring
layout (an edge connects two movie nodes if users voted them as similar).(a) This global
visualization does not provide much insight. (b) FACETS focuses on movies that are the
most subjectively interesting, surprising, or both. In this example, FACETS suggests Pretty
Woman (romantic-comedy) as an interesting, surprising related movie of Miss Congeniality
(crime-comedy).

• Actively adapting the exploration model to suit users’ needs. Analysts should

be aware of emerging patterns in their foraging, which can subsequently be used to

improve the filtering process on-the-fly. By being adaptive, it allows users to explore

facets of the graph that are more subjectively interesting to them.

1.3 Thrust II: Interactive, Visual Graph Query Construction and Refinement

The foraging in Thrust I: Adaptive Local Graph Exploration, may yield interesting sub-

graph patterns. Other similar subgraphs may exist, but may be topologically far from the

currently explored region. Graph querying extends the reach of local exploration once a

pattern is known (or even partially known).

Constructing and refining graph queries requires complex querying languages [4, 5, 6,

7]; however, we show that queries can instead be formed via a visual, interactive system.

Querying is often an iterative process that can benefit greatly from visual aids [8, 9]. Mak-

ing such a system requires both algorithms and visualization working in tandem, as few

algorithmic approaches have been designed for both interaction and visualization. This

thrust focuses on algorithms to locate matches and techniques that help analysts construct

and refine visual graph queries.

• MAGE: Approximate graph matching (Chapter 4). We present a scalable, ap-
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VISAGE Query Cypher QueryExample Result
MATCH (film1:film)--(film2:film)--(film3:film),
(film1)--(film3)

WHERE film1.genre = ‘Action & Adventure’ AND
film2.genre = ‘Action & Adventure’ AND
film3.genre = ‘Action & Adventure’ AND
film1.year >= 1980 AND film1.year < 1990 AND
film2.year >= 1980 AND film2.year < 1990 AND
film3.year >= 1980 AND film3.year < 1990

RETURN film1, film2, film3

Aliens Predator

The TerminatorAll Films:
Action & Adventure & 1980s

Figure 1.4: Left: a VISAGE query seeking three similar action films from the 1980’s along
with a result, found from the Rotten Tomatoes movie-similarity graph (an edge connects
two movies if they are similar). Right: the equivalent query written in the Cypher querying
language. VISAGE’s interactive graph querying approach significantly simplifies the query
writing process.

proximate subgraph matching approach that supports expressive queries over large,

richly-attributed graphs. Approximate matching allows analysts to provide queries

with missing or partial information and still receive results. This can improve the

query refinement process, wherein an analyst has an inaccurate assumption in their

query which is elucidated by their query results. We demonstrate MAGE s effec-

tiveness and scalability via extensive experiments on large real and synthetic graphs,

such as a Google+ social network with 460 million edges.

• VISAGE: Interactive, visual query construction and refinement (Chapter 5).

Graph querying currently requires users to specify the structure of their query in a

complex querying language. We show that human spatial reasoning can improve the

query construction and refinement process when presented with a visual metaphor

for their queries (Figure 1.4). By providing real-time data about an analyst’s current

query pattern as they construct it, our graph-autocomplete technique leads authors

away from null-results and towards insight. We evaluated VISAGE with a twelve-

participant, within-subject user study that demonstrates its ease of use and the ability

to construct graph queries significantly faster than using a conventional query lan-

guage. VISAGE works on real graphs with over 468K edges, achieving sub-second

response times for common queries.
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Figure 1.5: A screenshot of VIGOR showing an analyst exploring a DBLP co-authorship
network, looking for researchers who have co-authored papers at the VAST and KDD con-
ferences. (A) The Exemplar View visualizes the query, and (B) the Fusion Graph shows
the induced graph formed by joining all query matches. Picking constant node values (e.g.,
Shixia) in the Exemplar View filters the Fusion Graph. (C) Hovering over a node shows its
details. (D) The Subgraph Embedding embeds each match as a point in lower-dimensional
space and clusters them to allow analysts to see patterns and outliers. (E) The Feature
Explorer summarizes each cluster’s feature distributions.

1.4 Thrust III: Visualizing and Exploring Subgraph Matches

After constructing a query an analyst will receive numerous subgraph matches (which we

will call results). While there is significant interest in graph databases and querying tech-

niques, less research has focused on helping analysts make sense of underlying patterns

within a group of subgraph results. Visualizing graph query results is challenging, requir-

ing effective summarization of a large number of subgraphs, each having potentially shared

node-values, various node features, and flexible structure across queries.

Our system, VIGOR (Figure 1.5), combines scalable algorithms and interactive visu-

alization techniques to help summarize and compare large numbers of subgraph results

(Chapter 6). Its key contributions include:

• Visualization techniques for subgraph matches. Currently, few graph querying

systems offer more than tables, lists, or basic graph layouts for exploring results.
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We introduce two new visualization techniques for analyzing results: (1) an induced

result subgraph visualization that utilizes soft-intersection to highlight nodes that are

commonly shared among result subgraphs; and (2) a top-down, high-level overview

of all their results which enables them to handle complex grouping and comparison

tasks.

• An approach for exploring and filtering results through exemplars (familiar re-

sults). Each subgraph result contains a multitude of nodes and edges. An analyst can

interactively pick a known value (exemplar) for a node and immediately filter down

the results (starting from all the results and filtering down by familiar values). An

analyst to start with a whole result (in which all nodes have taken a value from the

graph) and relax or abstract particular nodes, to see what similar results exist (starting

from a known example and exploring the unknown).

• A novel algorithm for feature-aware subgraph result embedding. We introduce

an algorithm to transform result subgraphs into continuous, high-dimensional vectors

according to each result’s node features (sometimes called properties) and structural

features. This representation enables: (1) easier use with canonical machine learning

and data mining techniques, (2) robust similarity and clustering, and (3) the ability

to dimensionally reduce the results into 2D for summarization purposes.
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1.5 How the Thrusts Interact and Benefit from Each Other:

A Motivating Security Scenario

In this section, we present a scenario that demonstrates the synergy of our research thrusts.

The scenario illustrates a fictitious security analyst, David, who is studying computer secu-

rity threats on a company’s intranet. His goal is to find infected machines and to understand

the process by which they were compromised. The dataset consists of machines (nodes)

and their networked communications (edges). Assume that the nodes have a plethora of

information about the represented machine (the operating system, software versions, hard-

ware specifications, administrator name, etc.). This scenario follows David as he utilizes

systems, tools, and techniques from our three research thrusts (Figures 1.6 through 1.8

illustrate the scenario).

Several of David’s coworkers, Alice, Greg, and Ziggy have noticed their machines are

not working properly (Figure 1.6.1). With his domain knowledge, David quickly discovers

several of the machines are compromised with malware.

Alice Greg

Ziggy

1.

Greg

Ziggy

Alice

Printer13

Mail03

2.

Alice

Ziggy

Mail03 Greg

3.Initially infected 
coworker machines

Local foraging for suspicious communications, all 
coworkers' systems had heavy communication with 
Mail03

Further exploration indicates an interesting and 
surprising printer communicating constantly with 
Mail03

Legend Wildcard Mail Server Printer Work Systems

Figure 1.6: An Analyst, David, uses FACETS, a tool from Thrust I: Adaptive Local Graph
Exploration, to explore a compromised computer network. (1) He explores compromised
machines starting from a few know infected source machines (Alice, Greg, Ziggy). (2)
David expands the neighbors of Alice, Greg, and Ziggy, FACETS shows only surprising
and interesting neighbors. (3) He continues his search and discovers a suspicious printer,
Printer13.
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David uses our local exploration tool facets (Thrust I: Adaptive Local Graph Explo-

ration) and begins by adding Alice, Greg, and Ziggy’s machines (Figure 1.6.1). FACETS

ranks the neighbors by interest (like Alice, Greg, and Ziggy’s machines) and surprise (ma-

chines with unusual behavior compared to the global behavior).

He notices that Alice’s, Greg’s, and Ziggy’s infected machines have recently commu-

nicated with the same mail server, Mail03 (in the center of Figure 1.6.2, the thickness of

edges denotes the amount of communication).

He clicks Mail03 to show more of its most interesting and surprising neighbors (Figure

1.6.3). As David is clicking on nodes and exploring their details, FACETS is building

an internal user profile for his exploration. He sees that a printer, Printer13, has been

spamming Mail03 (red Printer-node in Figure 1.6.3). A printer! Our thin white duke is

now alarmed; Printer13 was compromised and is using Mail03 to spread its control.

He now has some basic knowledge of a suspicious structure; this is where Thrust II

(Interactive, Visual Graph Querying Construction and Refinement) works synergistically

with his initial graph exploration from Thrust I (Adaptive Local Graph Exploration). He

uses VISAGE (from Thrust II: Interactive, Visual Query Construction and Refinement) to

...

Printer13

Mail03
Polo

Casey

Yacin

Printer13

Mail03
Andy

Jerry

Peter

...

2. Results! Printer13 has 
    compromised many machines.

Printer13

1. David creates a visual query

Result 1

Result 2

...

Figure 1.7: David wants to see if there are other infected devices connected to the mail
server. (1) He constructs a query with VISAGE, but replaces Alice, Greg, and Ziggy’s
machine-nodes with wildcard nodes (nodes with a star), which could be any devices on the
network. (2) VISAGE returns the results in a list of matches.

9



visually construct a query (without writing his query) starting specifically with Printer13

(as in Figure 1.7.1-1.7.2). To it he adds a node and selects its type as “Mail Server”. To

the mail server node he attaches a wildcard node that could be any machine (pictured as a

node with a star in Figure 1.7.2). He copies this wildcard two more times and adds edges

between them to form a triangle (dashed lines in Figure 1.7.2). He does this to match

the original communication pattern among Greg, Alice, and Ziggy. He chose wildcards

to find if other individuals are at risk. He has now created a query looking for any mail

server that has been heavily communicating with Printer13 and with three other individual

machines. He dispatches his query to our MAGE system, which finds the matches. MAGE

(from Thrust II) is an algorithm which finds exact and approximate subgraph matches in

large networks.

The results flood into view (listed in Figure 1.7.3) via a conventional list-view provided

by VISAGE. The list view shows each result separately, allowing him to see which ma-

chines fit his infection-pattern. Given only the table and list visualizations, its a challenge

for him to determine what groupings of similar results occur or how a particular node value

appears among the results. He wonders if other systems besides the printer are involved.

He modifies his VISAGE query by replacing Printer13 with a wildcard (Figure 1.8.1-1.8.2)

and dispatches it back to MAGE.

With the more abstracted query, there are significantly more matches. The problem

looks serious; he does not have time to go through each result separately. David then uses

VIGOR from Thrust III: Visualizing and Exploring Subgraphs to switch from the list view

to a summary view (Figure 1.8.3), where each result is plotted as a single point, providing

a high-level overview of result similarity. The clusters of 2D points, represent sets of

similar results from a dimensionally-reduced graph embedding (described in Chapter 6).

By selecting different clusters of nodes he can quickly evaluate other potential abstractions

of his initial intuition about the compromised systems. Figure 1.8.3 shows some of the

other clusters that he has found. The compromised systems are all over the company, not

10



3. He plots the subgraph results using feature-aware 
graph embedding and looks at the emergent clusters

Broadcast by 
Different Mail Server

Infected By Printer16

Infected by Printer13

Infected by Internet of Things Device 

Infected Mobile Devices

1.What if it isn't just one printer? 

Printer13

David relaxes the query to check 
other compromised systems

2.

Figure 1.8: Analyst David abstracts Printer13 in his query (1) to a wildcard looking for any
system with similar communication patterns (2). He receives the results of his abstracted
query and views them in a feature-aware subgraph result embedding (3). Each result sub-
graph is reduced to a point so that similar results appear close to one-another. He uses this
view to find other infected systems.

just within a single department or group. He notifies management.

Exemplar-based filtering allows David to select known values (like Printer13) in his

query and filter down to only results that have the exemplar node (i.e., only mail servers

and systems compromised by Printer13). This makes classifying where the damage has

happened much faster and easier than a conventional table.

Using the tools developed in our three research Thrusts, David was able to detect an

initial pattern, formulate queries around it, investigate other similar communication pat-

terns, and quickly discern which groups have compromised systems. He has used graph

sensemaking to help detect a serious threat by weaving our three research thrusts.
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1.6 Thesis Statement

We blend methods, techniques, and principles from visual analytics and data mining to

create new interactive, scalable tools that enable analysts to explore and analyze large net-

works more easily, through:

1. a novel adaptive local network exploration paradigm and new measures of surprise

and interest to guide user towards interesting content;

2. a synergistic combination of algorithmic and interactive visual techniques to em-

power analysts to construct and refine expressive queries without writing complex

querying code; and

3. new result summarization techniques based on feature-aware subgraph-result embed-

ding and clustering that allows analysts to quickly compare numerous graph query

results.
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1.7 Research Contributions and Impact

The goal of our thesis is to combine the strengths of data mining, visual analytics, and

graph databases to improve graph sensemaking through network exploration and querying.

We contribute to several facets of data mining, and visual analytics by combining them

together.

For Data Mining:

• Algorithms. We introduce FACETS (Chapter 3) which utilizes fast, dynamic rank-

ings of node neighborhoods to lead analysts towards interesting content. We design

and develop a highly scalable algorithm in MAGE (Chapter 4) for approximate sub-

graph matching on large networks with node and edge attributes, wildcards, and

multi-attributes. MAGE uses a novel approach based on the linegraph transforma-

tion to embed edge attributes. In VISAGE (Chapter 5), we create algorithms to sup-

port dynamic interactive graph querying in real time by transforming visual queries

into written queries in two querying languages. In our VIGOR system (Chapter 6),

we introduce a novel, feature-aware subgraph result embedding. This embedding

uses semantic node-feature data as well as topological data when creating a high-

dimensional result embedding.

• Systems. In this thesis work we have developed four systems. We contribute them

to the research community as planned open-source projects: FACETS for adaptive

local exploration (Chapter 3), MAGE for approximate subgraph matching (Chapter

4), VISAGE interactive visual graph query construction and refinement (Chapter 5),

and VIGOR exploratory visualization of subgraph results (Chapter 6). VISAGE won

the SIGMOD’17 Best Demo Honorable Mention award.

• New Metrics to Determine User Interest. In FACETS, Chapter 3, we contribute two

new metrics based off of the Jensen-Shannon divergence of feature-neighborhoods:
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(1) for subjective user interest modeling and (2) for measuring a nodes rarity and

surprisingness against a network.

• Novel subgraph-result embedding We introduce an algorithm to group results by

node-feature and structural result similarity and embed each result in a low dimen-

sional representation. By grouping similar results into clusters and making cluster

comparisons easy, analysts can quickly detect and understand underlying patterns

across their results.

For Visual Analytics:

• New Adaptive Graph Exploration Paradigm. We contributed a survey that sum-

marizes and discuss many challenges and opportunities for new network analytical

systems (Chapter 2). FACETS is a new step towards an adaptive-exploration paradigm

in visual analytics, exploiting the data generated during interactions between a soft-

ware system and a user to aid the exploration of data.

• New Interactive Graph Query Construction and Refinement via Graph Auto-

complete. VISAGE (Chapter 5) represents a major step towards interactive, visual

graph querying. It provides a new, highly-usable querying paradigm, that uses sim-

ple drag-and-drop interaction to construct complex queries, rather than having to

learn a querying language VISAGE introduces a novel interaction technique called

graph-autocomplete, which guides analysts away from over-specifying their queries.

VISAGE outperforms conventional querying writing and refinement in a laboratory

study for both expert and non-expert subjects.

• Visual Result Exploration VIGOR introduces a new overview mechanism to visual-

ize large numbers of subgraph results (Chapter 6). It also employs an exemplar filter

to explore the results by filter down to only results with familiar nodes.
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• Scalable Interactive Tools. Our interactive systems advance the state of the art, by

facilitating real-time discovery and exploration in graphs with millions of edges (e.g.,

VISAGE and FACETS). Empirical runtime analyses demonstrated FACETS s practical

scalability on large real-world graphs with up to 5 million edges, returning results

in fewer than 1.5 seconds. We demonstrated realtime querying with VISAGE, with

sub-second querying times on a real Rotten Tomatoes movie graph with over 170

thousand relationships.

We believe that our thesis will catalyze and accelerate new research and innovation

bridging the areas of graph data mining and visual analytics. We hope that this human-

in-the-loop data mining work inspires researchers and practitioners to consider the rich

potential of working in the intersection of data mining and visual analytics.

Our research allows analysts to forage for graph insight faster and, once interesting

patterns have been uncovered, to expand on them with interactive, visual graph querying.

All without the need to learn a new querying language.
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CHAPTER 2

BACKGROUND & PRIOR WORK

In this chapter we will cover the related work necessary for our research. Because our

research combines visual analytics, data mining, databases, and sensemaking, we will cover

a large variety of research areas.

2.1 Scalable Graph Exploration and Visualization: Sensemaking Challenges and

Opportunities

In this dissertation we focus on local graph exploration techniques. Local views are visu-

alizations in which only a subset of the entire graph data is shown. Because only a portion

of a much larger graph is displayed, these approaches tend to improve visual comprehen-

sion, require less computation, but show only a subset of the total information. Many local

algorithms need only to run on subgraphs, potentially improving scalability.

2.2 Graph Visualizations & Global Exploration

Both Herman [11] and Landesberger [12] have surveyed the rich variety of static graph

visualizations. Beck et al. followed up on this surveys and investigated visualization tech-

niques for dynamic graphs [13].

Global visualizations are often very challenging due to the amount of space needed to

layout all the nodes and edges [14, 15, 16]. Many graph datasets do not contain spatial node

positions, leaving their spatial layout as an exercise for the analyst. Significant research

has been done by graph drawing communities investigating how to lay out and summarize

entire graphs [17, 14, 15, 16].

Chapter adapted from work at BigComp’15 [Paper Link] [10]

16

http://www.cc.gatech.edu/~rpienta3/data/papers/15-bigcomp-sensemaking.pdf


For graphs that are too large to display at once in full detail, several classes of ap-

proaches have been proposed to make them more manageable for exploration: sampling,

filtering, partitioning, and clustering. We use many of the ideas in our works VISAGE,

VIGOR, and FACETS which require visualizing and interacting with subgraphs. In the fol-

lowing sections we will elaborate on which areas we have drawn inspiration in our own

works.

2.3 Free Exploration & Targeted Discovery

Local exploration was first investigated on hierarchical graphs in [18] and later expanded

on by [19] to incorporate the idea of “degree of interest” to help users identify which nodes

to explore. Systems like Apolo [20] do not impose an hierarchy on the data, allowing users

to freely define their own clusters, which Apolo incorporates into its machine learning

algorithms to infer which nodes the users may want to explore next. We draw directly on

these ideas in FACETS to show users a mix of potentially interesting and surprising nodes

based off their current exploration.

Information retrieval research has focused on scalable approaches to analyze the web-

browsing and paths users traversed as they explored the web for millions of users. Click

trails have been used to improve the ranking of search results [21, 22]. In many cases, the

destinations of such trails can be used directly as search results [23], or even to teleport

the user directly to the desired page [24]. FACETS attempts to dynamically infer these

patterns by analyzing the ongoing trail formed by the analysts current graph exploration. It

uses emergent patters in the trail to show only a subset of a node’s neighbors. West et al.

studied users’ abilities and wayfinding techniques as users crawled Wikipedia [25]. They

observed a trade-off wherein users would prefer conceptually simple solutions at the cost

of efficiency.
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2.4 Graph Sampling & Filtering

Instead of drawing the entire graph, many approaches sample or filter (stochastically or de-

terministically) a subset to reduce a graph’s size. There are numerous techniques which aim

to maintain different structural properties, while randomly sampling from a graph [26, 27,

28, 29]; [14] and [30] compare them on real graphs. Many recent techniques are surveyed in

[31]. Lee et al. investigated statistical properties of sampling techniques and characterizes

techniques on how they bias topological properties like betweeness centrality, assortativity,

and clustering coefficient [32].

We use graph sampling ideas in VISAGE to create graph autocomplete, a method that

samples graph results to help users avoid over-specification and null-results. In our ongo-

ing multi-result visualization research, we have experimented with sampling techniques to

offer the user some context from the original graph along with their results.

Jia et al. have shown that filtering by the approximate betweeness centrality will reduce

the graph size while still maintaining the essential structure of the graph [33]. Filtering can

even be employed to improve the performance of graph-based machine learning models

[34]. This helps reduce visual clutter from large numbers of edges, which edge bundling

[35] may be able to simplify. Edge bundling bundles groups of overlapping edges together

to reduce the edge-clutter and clarify the underlying structure. There are numerous edge

bundling variants: force-directed [36], multilevel agglomerative [37], hierarchical [35], and

skeleton [38].

Our FACETS system uses adaptive filtering to show the user the most interesting nodes

based on their current exploration. Instead of filtering by centrality our filter blends inter-

esting, surprising and important nodes to help the analyst make sense of their data.
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2.5 Partitioning & Clustering Graphs

2.5.1 By Structure

A common approach to creating an overview graph is to use partitioning methods on the

graph and visualize the partitions [39, 40]. Often particular graph topologies can be lever-

aged to improve the partitioning; as with bipartite graphs in [41] or meshes and irregular

graphs in [42]; however, partitioning scale-free networks often results in exceedingly poor

partitions [43]. PULP [44] was designed to partition small-world networks. Partitioning

can be useful when organizing large graphs, and may be needed in our upcoming work on

visualizing graph uncertainty.

2.5.2 By Attributes

Another approach is to create clusters of nodes with similar attributes or to use online

analytical processing (OLAP) techniques to roll-up all nodes with a common attribute.

In [45], Tian et al. demonstrate SNAP; which creates a summary graph by allowing

user-specified attributes to determine node-node similarity; and k-SNAP which automati-

cally generated subgroups allowing a user to drill-down or roll-up levels of summarization.

Neville et al. used relational attribute information to create clusters from a the rich rela-

tional data for text and link mining [46]. We have started experimenting with attribute-

centric clustering techniques for our ongoing work visualizing multiple results.

2.5.3 Using Both Structure and Attributes

Combining both structural and attribute information yields a reduced version of the graph

where the clusters are both structurally tight and of similar attributes [47, 48]. Zhou et

al. proposes a novel distance measure that combines both structural distance as well as

node attribute similarity [48]. PivotGraph [47] aggregates nodes and edges based on their

attributes; however, it uses a grid-based layout to focus on the relationship between nodes’
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attributes and connections.

Clusters may also be human-generated, as in [20, 49]. Allowing users to generate and

customize their own clusters makes exploration more flexible to changes in input datasets.

Rather than relying on a force-directed layout, Schneiderman and Aris propose a static

graph layout called semantic substrates [49] which are user-defined, non-overlapping re-

gions in which the nodes are placed according to their attributes.

This area is important to our proposed work in Chapter 6. Both visualizing approximate

subgraph matches and visualizing large numbers of subgraphs can benefit greatly from

clustering techniques.

2.6 Graph Models, Storage, & Databases

One considerable challenge when querying graphs is storing the graph data. Storing graph

data often follows one of two routes:

1. Tuple-based storage - Each relationship of the network is captured as a tuple be-

tween two entities, or an entity with itself. The most common is Resource Descrip-

tion Framework (RDF), but other tuple-based models predated RDF like the Logical

and Functional Data Models respectively [50, 51].

2. Explicit graph data models -Relationships are stored explicitly as adjanceny ma-

trices, edge-lists or other similar explicit topology-capturing data structures. Models

like GRAS [52], G-BASE [53], Gram [54], and GraphDB [55] represent the foun-

dation of explicit graph data that many querying systems use today. Many of these

approaches fall into the category of “not only SQL” or “Non SQL” NoSQL databases

many of which are covered here [56].

While our work in this dissertation does not explicitly focus on the development of novel

graphical models, we build on the expertise and research of others in all of our publications.

For our works FACETS and MAGE works we leverage explicit graph models through the
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compressed sparse row format heavily [57]. Our VISAGE, CHOPSHOP, and VIGOR ap-

proaches work regardless of the graph database system by supporting modules for multiple

graph databases. They will be discussed in greater detail in Chapters 5 and 6.

2.6.1 Querying Languages

Query By Example [58], is an early bottom-up querying system allows users to formulate

queries by creating templates from “example queries” rather than writing conventional SQL

statements. Another key innovation is to abstract the exact underlying data schema away

from analysts as in PICASSO [59], which uses visual glyphs to create visual database

queries. Both [60] and [61] avoid complex data schemas in favor of graphical widgets.

For a further detail of visual querying languages on relational databases see [62]. Data

storage techniques like the extensible markup language (XML) and resource description

framework (RDF) have spurred other querying languages like XQUERY [4], XPATH [5],

SPARQL [6]. Both [63] and [64] propose graphical querying languages for XML, while

Hogenboom et. al propose one for RDF data [65]. Our work builds on visual querying by

using visual metaphors for both constructing graph queries and displaying the results.

2.7 Subgraph Mining & Graph Querying

Domains from bioinformatics to intelligence analysis often seek particular subgraphs from

their data. Graph pattern matching is a variation of the subgraph isomorphism problem,

an NP-complete task of determining if a given graph is a subgraph of another graph [66].

Exact graph pattern matching is computationally expensive and hard to parallelize. There

are numerous techniques to extract all the matching subgraphs from a network; however

they often follow one of the following paths:

1. Structural Matching - Many domains rely on exact structural matching. Ullmann

first published an algorithmic solution to tackle this combinatorial problem [67].

Mesmer and Bunke later showed that Ullmann’s algorithm has exponential worst-

21



case time complexity and introduced a quadractic time algorithm [68]. Their solution

operates in polynomial time; however, it requires an exponentially-sized decision-

tree, making it unrealistic for large graphs. New approaches have extended these

results: singular value based matching [69], weighted graph matching with eigende-

composition [70], inexact mathcing with genetic search [71], and many others some

of which are surveyed in [72].

2. Semantic Matching - Many real world networks are rich with types and features on

both vertices and edges. One sensible approach is to search for approximate matches

while another is to leverage attributed subgraphs to speed up search. The TRAKS

system, [73], allows a user to query to match templates using an ontology to detect

security risks. TMODS, [74], uses genetic algorithms to find pattern matches in

attributed graphs.

3. Hybrid Structural-Semantic Matching There are a few recent systems that offer

approximate subgraph matching, which all focus on large scale techniques for se-

mantic and structural matching. These include G-RAY [75], MAGE [76], Graphite

[77], NeMa [78], TALE [79], and TopKDiv [80]; to name a few. This is essential in

scenarios where the user already knows of an interesting pattern exactly or approx-

imately, and wants to find where or how often it occurs in a larger graph. Many of

these systems do not focus on the visualization of the query and results, but rather

on the algorithmic and data mining challenges. Fan et al. exploited this idea in order

to hide the large latencies of graph querying by constructing partial results as a user

specified their query pattern [81, 80].

2.7.1 Visual Graph Querying

Several recent systems focus on providing user interfaces for graph query construction.

GRAPHITE [77], allows users to visually construct a graph query over categorically at-
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tributed graphs. VOGUE [82], is a query processing system with a visual interface that

interleaves visual query construction and processing. Cao et al. created g-Miner, an inter-

active multivariate graph mining tool that supports template matching and pattern querying

[83]. These tools formed the foundation that lead us to create our VISAGE (Chapter 5) and

VIGOR (Chapter 6) systems.

2.8 Frequent Subgraph Mining & Network Motifs

Many works have focused on the discovery of common subgraphs from within much larger

graph datasets, which could help discover abnormal activities in the networks, e.g., auc-

tion fraud [84], insider trading [85], detecting patterns in protein networks [86], or insider

threats in a company [87]. This explorative process requires almost no foreknowledge of

the input graph. Originally coined in [88, 89], network motifs are common subgraphs or

patterns that occur “unusually” often in a network when compared against random net-

works of the same size.

Generating the network motifs is a computationally expensive procedure involving sub-

graph enumeration and aspects of graph similarity from subgraph isomorphism, current

approaches can detect motifs with dozens of nodes, for modestly sized graphs [90]. Milo

et al. use a scanning approach for all n-node subgraphs and then compares the occur-

rence of such n-node graphs with their chance to occur in a random-network [89]. Yan

et al. created gSpan, short for graph-based substructure pattern mining, which discovers

frequent graph substructures without the need for a prebuilt candidate list [91]. Grochow

et al. further improved motif detection scalability in [90], by using subgraph enumera-

tion and symmetry breaking which intelligently eliminates repeated comparisons, yielding

significant speedups.

Related to motif identification, recent research [92] proposed to develop a vocabulary

of common subgraph patterns that can be used to summarize the global graph. Dunne

and Shneiderman [93] present motif simplification, wherein common patterns or motifs are
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replaced with easily understandable glyphs (e.g. fans and cliques), which was subsequently

applied to biological networks in MAVisto [86].

These techniques provide a collection of data mining and visualization techniques to

show subgraph matches embedded in the graph from which they were mined and provide

statiscal measures for motif or pattern significance. This is directly applicable to our result

visualization work in Chapter 6. We want to provide users with structural context from

their original graph given a set of subgraphs and motif mining may offer a principled way

to pick the right neighbors to show.

2.9 Statistical Relational Models and Querying

Statistical relational learning formulates domain models that exhibit both uncertainty and

complex, relational structure. Statistical relational models (SRMs) have been applied to

many graph and relational data models [94, 95, 96]. We leverage SRM techniques in our

CHOPSHOP work to predict how likely certain constraints and graph structures are. We use

these likelihoods to help a user get more results from their query, by offering relaxations

and modifications to constraints that the user has performed. The Why Not? system [97]

attempts to solve a similar problem, to help users whose query has returned little or nothing.

Their approach uses the query evaluation plan in a SQL relational database to locate over-

specified constraints and subsequently allows the user to remove them.

Probabilistic database systems use a similar data-driven representation Utilizing the

underlying distributions was used in [98] to create explanations for SQL queries. The

explanations are tuples which critically effect the output of complex queries (i.e., critical

aspects of the results that pose an explanation for the observed behavior).

2.10 Graph Kernels and Embedding

Graph kernels are a class of function that computes the inner product on entire graphs and

are often used to calculate the similarity between a pair of graphs. There are numerous

24



types of graph kernels: Weisfeiler subtree [99], path-based [100], graph edit distance based

[101], marginalized [102, 103], and many others [104]. We use graph kernels to create

the input pairwise distances for dimensionality reduction (covered in the next sub-section)

used to plot subgraph results in VIGOR.

Both [105] and [104] use the structure to create the embedding while NetSimile, [106],

uses extracted features. Grover et al. released a technique called node2vec, a graph embed-

ding that smoothly blends local and global characteristics when creating a continuous, high

dimensional representation [107]. A similar approach, subgraph2vec was also suggested,

which learns latent representations of subgraphs in a continuous, high dimensional space

for use in deep-learning applications [108]. Van den Elzen et al. used graph embedding to

plot the changes in dynamic graph snapshots over time [109]. We draw on some of these

ideas in VIGOR to collapse each subgraph result down to a point, the details of which will

be discussed in Chapter 6.

2.11 Dimensionality Reduction

Dimensionality reduction takes a collection of points and projects them into a low di-

mensional subspace, so that characteristics of the high dimensional points are maintained.

There are numerous linear and non-linear dimensionality reduction techniques: principal

component analysis (PCA) [110, 111], kernel-PCA (KPCA) [112, 113], multidimensional

scaling (MDS) [114, 115], t-Distributed Stochastic Neighbor Embedding (t-SNE) [116],

local linear embedding (LLE) [117].

Many of the approaches run in quadratic time with respect to the number of data points,

which becomes prohibitively expensive. Variants of these approaches reduce the compu-

tational demands like Randomized PCA [118, 119], MDS [120], Barnes-Hut-SNE [121],

and LLE [122].

Approaches like MDS and t-SNE have an additional advantage, they allow non-

Euclidean distance calculations when determining the distance between points. Other
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distance metrics can provide better performance: Canberra [123], Kolmogorov-Smirnov

[124], or the degree distribution quantification and comparison measure [125]. Our system

VIGOR (Chapter 6) makes use of dimensionality reduction to represent each subgraph

result as a point in 2D. Because dimensionality reduction techniques apply differently to

various scenarios, we make multiple options available to the analyst during runtime.

2.12 Graph Interaction Techniques

The HCI and visualization communities have researched many useful interaction tech-

niques [126, 127, 128, 127]. Recently there has been significant focus on network interactio

and exploration [128, 129, 130] Lee et al. taxonomized common graph visualization in-

teractions in [131]. They separate low level tasks into topological, attribute, and browsing

based groups. This research is important to our thesis, because usable, intuitive interfaces

can greatly streamline the process of exploring data.

2.12.1 Common Interaction Techniques

User interaction in graph visualizations is essential in all graph exploration tasks. Canon-

ical graph interaction techniques such as brushing, linking, panning, and zooming appear

consistently in graph visualizations [132, 133, 134, 135, 136]. We offer variations of these

in both FACETS and VISAGE, and we will make further use of them in our proposed and

ongoing work.

Interaction is often used to change the visual representation of network data from a

network diagram to a matrix or visa-versa as in Node-Trix [137] and with elastic hierarchies

[138].

2.12.2 Lenses & Selections

Another common approach is to provide “details on demand” through a simulated lens that

provides a detailed view when placed over dense areas. Lenses have proven effective for
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numerous graph applications [18, 139, 19, 140, 141, 130]. Lenses often highlight geometric

aspects of the data, but they may also highlight other elements, like Color Lenses [136] or

Excentric Labels [142, 143] which provide greater detail in data-dense visualizations like

matrices and tables.

There are two main methods for node and edge selection: pointer-selection and query-

selection. In pointer-selection, the pointer is used to: manually click to select, drag a

selection, draw a selection lasso or brush a selection. Query-selection usually uses a query

language or filtering interface to let the user specify which nodes they want selected based

on node or edge level attributes. Query-selection can be especially useful in cases with rich

multivariate node and edge data.

2.12.3 Structural & Topological Navigation

Topological navigation uses the graphs structure to show and hide portions of the graph

based on the connections between nodes. Often this is used so that only a local area of

interest is displayed. This neighborhood traversal technique can be very effective means

to explore a graph using local topological jumps [144].

TreePlus [129] uses a tree structure to aid in users’ exploration of hierarchically clus-

tered graph data. By letting users selectively grow the hierarchy, TreePlus strikes a balance

between detail and intuition by offering excellent readability, layout stability, and the users’

perceptions of tree structure.

In the case of networks with scale-free or near scale-free degree distributions (and other

graphs with high degree nodes), pure topological browsing is insufficient, because drawing

a single node’s neighbors may be drawing a large portion of the graph. Thrust 1 aims to

overcome this issue with adaptive filtering and node-neighborhood summaries. We demon-

strate this in our FACETS system.
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2.12.4 Degree of Interest Navigation

Degree of interest (DoI) techniques use a function to hide parts of the graph that are un-

interesting to the user [18, 145, 19, 146]. A DoI function evaluates the importance of

nodes based on an initial node or group of nodes and produces a ranking for related nodes.

Neighborhood traversal can be expressed as a simple DoI function. While the DoI func-

tions proposed originally in [18] used a form of graph distance, other graph-attributes can

be used to capture user interest [19].

DoI functions can be dynamic and tuneable: Abello et al. created a modular DoI for

large dynamic networks; wherein they provide the user an interactively defined DoI to im-

prove a user’s ability to track critical dynamic elements of their network [147]. The Apolo

system integrates machine learning to infer multiple types of DoIs simultaneously [20]. Re-

cently, Entourage, a tool for visualizing biological pathways, uses contextual information

provided by the user to visualize interdependencies among pathways [148].

Our first thrust for adaptive local exploration relies heavily on the previous research into

DoI navigation. FACETS uses a dynamic DoI that combines both interest and surprise to

show only a subset of nodes. Our dynamic DoI is updates based on the user’s interactions

with displayed content in the system.
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Thrust I

Adaptive Local Graph Exploration and

Navigation
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OVERVIEW

Given the enormity of modern network datasets, there are many challenges involved in sup-

porting graph sensemaking. Everyone has different prior knowledge, goals, and approaches

to solving a problem. These facts drove us towards research to: flexibly create data land-

scapes that are adaptively tailored to analysts needs as they explore, and rank nodes by

more than canonical importance or centrality measures.

Conventionally, the mantra “overview first, zoom & filter, details-on-demand” in in-

formation visualization relies on peoples perceptual ability to understand a global or sum-

marized version of their dataset. Because the large number of nodes and edges in a graph

often occlude each other, even modest sized graphs are hard to utilize as a starting point for

top-down exploration.

In the following Thrust I, we present FACETS (Chapter 3), a system which enables an-

alysts adaptively explore large million-node graphs from a local perspective. We overcome

many challenges of the top-down exploration paradigm by starting from a single node and

showing only a subset of interesting and surprising neighboring nodes at each step of the

way. We contribute novel ideas to measure user interest in terms of how surprising a neigh-

borhood is given the background distribution, as well as how closely it matches what the

user has chosen to explore.
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CHAPTER 3

FACETS: ADAPTIVE LOCAL EXPLORATION OF LARGE GRAPHS

Large graphs are ubiquitous. They are natural representations for many domains, and hence

we find graph structured data everywhere. As data collection becomes increasingly simple,

and many domains remain complex, real-world graphs are rapidly increasing in size and

data richness. These graphs may have thousands or more of attributes and have over mil-

lions and billions of nodes and edges. It is fair to say that many graphs are in fact too big;

exploring such large graphs, where the goal of the user is to gain understanding, is a highly

non-trivial task.

Visualization is perhaps the most natural approach to exploratory data analysis. Under

the right visualization, finding patterns, deciding what is interesting, what is not, and what

to investigate next should become easy tasks — in a sense the answers “jump to us” as

our brains are highly specialized for analyzing complex visual data. It is therefore no

surprise that Shneiderman’s mantra of “overview, zoom & filter, details-on-demand” [151]

has proven to be successful in many domains [152, 153, 151].

Visualizing large graphs in an intuitive and informative manner has proven to be dif-

ficult. Even with advanced layout techniques (e.g., those covered in [33, 15]), plotting a

graph can create a hard-to-read cluster of overlapping nodes and edges, from which little

can be deduced [152, 154]. This is the case even for graphs with only thousands of nodes

(see Figure 3.1(a) for an example). Instead of plotting the whole graph, visualizing only

part of the graph seems more promising [19, 20, 155]. However, as many real world graphs

are scale-free (follow a power law degree distribution [156]), selecting relevant subgraphs

to visualize can be challenging [20], since in such graphs, a single-hop neighborhood ex-

Chapter adapted from work at SDM’17 [Paper Link] [149]
Poster Version of the Work at IEEE VIS’15 [Paper Link] [150]
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Figure 3.1: (a) The Rotten Tomatoes movie graph shown using conventional spring layout
(an edge connects two movie nodes if some users voted them as similar). Even for this
relatively small graph of 17k nodes and 72k edges, a global visualization does not provide
much insight. (b) A better way, using our FACETS approach, focuses on movies that are
the most subjectively interesting, surprising, or both. For example, FACETS suggests Pretty
Woman (romantic-comedy) as a interesting, surprising related movie of Miss Congeniality
(crime-comedy).

pansion from a node can be visually overwhelming.

We take a different approach. We propose to adaptively explore large graphs from a

local perspective. That is, starting from an initially selected node — e.g., explicitly queried

by the user, or proposed by an outlier detection algorithm [157] — we only show the most

interesting neighbors as the user explores the graph from node to node. We identify these

by their subjective interestingness based on how surprising their and their neighbors’ data

distributions are (e.g., do neighbors’ degree distributions follow a power law like when

considering all nodes?), as well as by how similar those distributions are compared to those

of the nodes the user has explored so far. By only showing those parts of the graph that are

most interesting to the user, we keep the view clean. By being adaptive, FACETS allows

users to explore facets of the graph that are most interesting to them.

We call our adaptive approach FACETS — our idea is a significant addition to existing

works that aim to recommend individual nodes to users (e.g., with centrality measures [147,

20, 19]); instead, we steer users towards local regions of the graphs that match best with

their current browsing interests, helping them better understand and visualize the graph at

the same time. We focus on ranking nodes based off how interesting an unexpected their

neighborhoods are.

32



3.1 Illustrative Scenario

To illustrate how FACETS works in practice, consider our user Susan who is looking for

interesting movies to watch (see Figure 3.1), by exploring a Rotten Tomatoes movie sim-

ilarity graph with 17k movies. In this graph, an edge connects two movie nodes if users

of Rotten Tomatoes voted them as similar films. Susan has watched Miss Congeniality1,

a crime-comedy that stars Sandra Bullock as an FBI agent who thwarts terrorist efforts by

going undercover, turning her rude unflattering self into a glamorous beauty queen (see Fig-

ure 3.1b). FACETS simultaneously suggests a few movies that are interesting and surprising

to Susan.

Matching Susan’s interest, FACETS suggests the Big Mommas House series, which also

have undercover plots and are interestingly like Miss Congeniality. They both share low

critics scores, but high audience scores (i.e., most critics do not like them, but people love

them). To Susan’s surprise, FACETS suggests Pretty Woman, which is quite different (thus

surprising) — a romantic-comedy that has both scores from the critics and the audience.

But, there is still more subtle similarity (thus still drawing Susan’s interest); both films

share a Cinderalla-like storyline, which explains why the two movies are connected in the

graph: Sandra Bullock goes from a rude agent to a beauty queen; in Pretty Woman, Julia

Roberts goes from a prostitute to a fair lady. In fact, Pretty Woman is a classic, exemplar

romantic-comedy; many movies follow similar story lines (e.g., Maid in Manhattan). Thus,

Pretty Woman has very high degree in the graph, unlike Miss Congeniality which is a niche

genre; this also contributes to Pretty Woman’s surprisingness.

Through Pretty Woman, FACETS again pleasantly surprises Susan with Oceans Eleven,

which also stars Julia Roberts, and is in a rather different light-hearted crime or heist genre,

introducing Susan to other very similar movies like Oceans Twelve and The Italian Job.

Figure 3.1(b) summarizes Susan’s exploration. If Susan were to use a conventional visual-

ization tool to perform the same kind of movie exploration, she would likely be completely

1One of the most frequently rated movies on Netflix
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overwhelmed with an incomprehensible graph visualization (as in Figure 3.1(a)).

3.2 FACETS’s Contributions

The key contributions of this chapter include:

• A framework for locally exploring a graph without clutter, showing only the most

subjectively interesting nodes, and hence being adaptive to the users’ interests.

• A formal notion of subjective interestingness for graph exploration taking both diver-

gence between local and global distributions, and similarity to explored nodes into

account.

• A measure of surprise over neighborhoods — rather than local node attributes — to

draw users in the direction of graph areas with unexpected content.

• A highly scalable method, FACETS, for adaptively exploring very large graphs in a vi-

sual environment. Experimental evidence demonstrates the effectiveness of FACETS.

The rest of the chapter is organized as follows: First, we discuss related work and then,

in the Model section, we formalize the problem, introduce our notions of interestingness,

and propose our FACETS solution. In the subsequent Approach section we present our ideas

as an integrated approach, with visualization and algorithms working closely together. In

the Experiments section, we evaluate FACETS on large real-world datasets through multi-

ple complementary ways, including a small observational study, run time and scalability

analysis, and three case studies. Finally, we conclude.

In this section, we formalize the problem we aim to solve through our FACETS approach

to achieve adaptive exploration. Then, we describe our main approach, and proposed solu-

tions. To enhance readability, we have listed the symbols used in this chapter in Table 3.1.

The reader may want to return to this table for technical terms meanings used in various

contexts of discussion.
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Symbol Description

vi Node i
DJS Jensen-Shannon Divergence
DKL Kullback-Leibler Divergence
si Surprise-score for node vi
ri Interest-score for node vi
Ŝa Surprise scores for all neighbors of va
R̂a Interest scores for all neighbors of va
ws, wr Weights when si and ri are combined
fj j-th feature for nodes
λj Weight of feature fj
Li,j Neighborhood dist. of node vi for feature fj
Gj Global distribution for feature fj
Uj User profile distribution for feature fj

Table 3.1: Symbols & Notation

3.3 Problem Definition

The input is a graph G = (V,E,A) where A is a set of attributes, V the vertices, and E the

edges. Each node vi ∈ V has a corresponding attribute value for each attribute (feature)

fj ∈ A (e.g., degree). Our approach works with both numerical and categorical attributes.

We assume there are no self-loops (i.e. edges connecting a node to itself). We solve the

following problem with FACETS:

Definition 1 Node-Sequence Aware Ranking. Given a starting node va, a sequence of

nodes Vh ⊂ V in which a user has shown interest, how can we find the top-k nodes

among the neighbors of va that are (1) similar by features to the sequence of Vh nodes

(subjective interest) and (2) uncommon compared to the global distribution (surprising or

unexpected)?

Graph exploration is an interactive and iterative process, where the user incrementally

explore parts of the graph. FACETS solves the above problem.

A common approach to rank nodes is by their importance scores, which are often com-
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puted using PageRank [158], Personalized PageRank [159] or random walk with restart

[160]. However, there are other ways to rank the nodes, like using surprise or interest [161,

157]. We have chosen to rank nodes by their surprise and user-driven interest rather than

by the more conventional importance metrics. We chose surprise, because serendipitous

results and insight do not always come from the most topologically important nodes [161].

We made FACETS adaptive, because what makes nodes interesting varies from person to

person. For each node we suggest a combination of the most surprising and most interesting

neighbors at each step of the journey.

3.3.1 Feature Distributions

FACETS uses feature-based surprise and interest in order to guide the graph exploration

process. Even when a dataset does not contain node-level features, we can derive node

features by using common graph-centric measures like PageRank, centrality measures or

labels drawn from clustering (community detection) approaches. This means that even

without a set of initial features, it is still possible for FACETS to guide graph exploration.

FACETS requires a compact representation of feature distributions. Histogram is a natu-

ral and computationally inexpensive way to represent distributions. Our approach can con-

sider any histogram, regardless of the binning strategy — e.g., equi-width or equi-height

binning — used to infer the histogram. Here, we opt to use the parameter-free technique by

Kontkanen and Myllymaki [162] that is based on the Minimum Description Length (MDL)

principle. In a nutshell, it identifies as the best binning one that best balances the complex-

ity of the histogram and the likelihood of the data under this binning. In practice this means

it automatically chooses both the number of and locations for the cut points, that define the

histogram. It does so purely on the complexity and size of the data.

Definition 2 Representing Local Feature Distributions. We first create a histogram for

a given feature fj and a set of nodes V with their feature values. A histogram consists a

set of bins b ∈ Bj each of which has a probability value based on the number of nodes
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corresponding to. Although we have chosen MDL binning to construct our histograms,

FACETS will work with most histograms and binning approaches.

The neighborhood (or local) distribution Li,j is a distribution of features fj over a set

of neighbors of a particular node vi (visualized in FACETS in Figure 3.2.c in orange); The

global distribution Gj is the feature distribution across all nodes (visualized in FACETS in

Figure 3.2.c in gray); and the user profile distribution Uj is the distribution of a sequence

of interesting nodes Vh collected from the user during interaction with FACETS.

FACETS works by guiding users during their graph exploration using both surprising-

ness and subjective interest that changes dynamically to suit the user. We do each of these

rankings by comparing the local or neighborhood feature distributions with the global to

determine surprisingness and the local with a user profile to determine dynamic subjective

interest.

3.3.2 Ranking by Surprise

In order to calculate a node’s surprisingness we compare the distribution of the node’s

neighbors with the global distribution for each feature. We chose a combined feature-

centric and structural approach, because both structure and features play a critical role in

0 250

(b)

(a) (c)

Figure 3.2: Local and global distribution histograms are both essential to FACETS. Lo-
cal histograms (orange bars) are representations of feature distributions in a single node’s
egonet. The global distributions (gray bars) depicts the corresponding feature’s distribution
across the whole graph. The difference between those two distributions is an indicator of
whether or not a node is “unexpected” or surprising compared to the majority in the graph.
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inference problems [163]. Nodes whose local neighborhood vary greatly from the global

are likely to be more surprising as they do not follow the general global trends.

One approach is to use the base entropy over node features to detect anomalous nodes;

however, this ends up biasing the ranking towards a skewed distribution. Instead we mea-

sure the difference between two distributions for more consistent results.

Through our experiments we have chosen Jensen-Shannon (JS) divergence, a symmet-

rical version of Kullback-Leibler divergence to construct our surprisingness metric. JS

divergence works well, because the resulting output is in bits so the divergences of several

features can be easily combined into a single score. We measure surprise by determining

the divergence of feature distributions Li,j over a node’s neighborhood Va (1 hop), from the

global distributions of features G (see Equation 3.3). From these scores we select the top-k

most surprising nodes (Equation 3.4).

Given the JS Divergence or information radius between two distributions P and G:

DJS (P ||G) =
1

2
D(P ||Q) +

1

2
D(G||Q), (3.1)

where Q = 1
2
(P +G) and D(P ||G) is the KL divergence for discrete distributions:

D(P ||G) =
∑
b

P (b) log
P (b)

G(b)
(3.2)

In Equation 3.2 we use base 2 so that 0 ≤ DJS (P ||G) ≤ 1. For a fresh node va, whose

neighbors are not yet visualized we first compute the surprise-score, si, of all neighboring

nodes vi ∈ N(va):

si =
∑
fj∈A

λjDJS (Li,j||Gj), (3.3)

where Lj andGj are the local and global distributions of node-feature fj and λj is a feature

weight. Weighted feature scores in Equation 3.3 are used to lessen the impact of noisy

features and to allow the user to lessen the contribution of a feature manually. The si
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scores are composed into Ŝa, which holds all the scores for the neighbors of initial node

va. We can find the most surprising k-nodes by looking for the largest divergence from the

global:

arg max
1...k

Ŝa (3.4)

This yields the top-k most surprising nodes among the neighbors of node va. Since both

the local-neighborhood feature distributions and the global feature distributions are static,

the surprise scores can be precomputed to improve real time performance. We precompute

and store surprise in FACETS to improve performance.

3.3.3 Ranking by Subjective Interestingness

We track the user’s behavior and record a user profile as they explore their data. Each

clicked node offers valuable details into the types of nodes in which the user is interested.

This forms distributions Uj for each feature fj .

To rank the user’s interest in the undisplayed neighbors of node va we follow a similar

approach as Equation 3.3:

ri =
∑
fj∈A

λjDJS (Li,j||Uj), (3.5)

where Uj is the distribution of feature fj from the user’s recent node browsing. In this case

we want the local distributions that match better the user’s current profile; i.e. we want the

smallest possible divergences:

arg min
1...k

R̂a (3.6)

Since this suffers from the cold-start phenomenon, because a user will not have a profile

until they have explored some nodes, our remedy is to simply start the suggestions with

surprising and important nodes, until the user has investigated several nodes.

In this section we cover the graph visualization and design of FACETS.
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Figure 3.3: The FACETS user interface displaying an explored portion of the RottenToma-
toes similar-movie graph. The user has traversed several films (shown as orange nodes
with titles) and FACETS has displayed a subset of the relevant neighbors (the nodes with
colors ranging from blue to red) and their connectivity. 1: The Table View provides a con-
ventional summarization of the already explored nodes and some of their features. 2: The
Graph View shows the connectivity of similar films as the user explores (it is linked with
the table so that a selected node is highlighted in both views. 3: The Neighborhood Sum-
mary shows the currently hidden nodes, by their feature distributions, for a selected film.
4: The User Profile demonstrates a heat-map or flat histogram of the features the user has
covered so far in their exploration. figures/adaptivenav are viewed best in color.

3.4 Components

We have created an adaptive graph exploration tool, FACETS, for performing fast and in-

tuitive exploration of graph datasets. FACETS was designed especially for graph tasks that

require node-level details.

FACETS’s user interface as shown in Figure 3.3 has four key elements: The first main

area is the Table View (1) showing the currently displayed nodes and their features. This

provides sortable node-level information. The central area is the Graph View (2). It is

an interactive force-directed graph layout that demonstrates the structure and relationships

among nodes as the user explores. Node colors are used to encode the surprise and interest

based on the user’s current exploration. We have the Neighborhood Summary (3) to
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summarize neighbors, as we cannot show a large number of neighbors in the Graph View.

The neighborhood summary allows a user to investigate the feature distributions of its

currently undisplayed neighbors as well as sort them by their interest or surprise scores.2 It

presents the user with feature heat maps3 that summarize the distributions of hidden nodes.

When clicked, the heat maps turn into conventional distribution plots (histograms), where

a user can compare the local neighborhood (orange) and the global (gray). This lets a user

quickly select new nodes based on their feature values and get a quick summary of this

node’s neighborhood. As a user explores, we construct and display a summary profile of

the important features they have covered in the User Profile view (4). The user profile

view suggests high-level browsing behavior to the user; allows for better understanding

of where the user-interest ranking comes from; and allows them to adjust if they want to

ignore certain features in the interest ranking.

3.4.1 Design Rationale

In the following paragraphs, we discuss our design rationale.

Exploring and Navigating

One of our design goals is to facilitate both exploration and navigation of graphs. We

use the term graph navigation to refer to the act of traversing graph data with a known

destination or objective. Graph exploration is more like foraging through the graph without

a particular destination. We facilitate navigation through adaptation and exploration by

filtering out unsurprising and unimportant nodes while still providing crucial feature details

for hidden nodes via the Neighborhood Summary window. As shown in Figure 3.4, the user

can bring up a summarized view of mouse-hovered nodes where the top ranked hidden

2FACETS focuses on novel ranking measures. Conventional measures (e.g., degree, PageRank, etc.) could
be supported as additional ranking choices in the drop-down menu in Figure 3.3.3.

3While histogram encodes value of each bin as height, heat map uses darkness to represent values with
equal height. The main advantage of a heat map over histogram is its compact representation, which helps us
save space.
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Figure 3.4: FACETS’s neighborhood summary view, which displays the top ranked neigh-
bors of the given node (left) and distributions of the current neighborhood’s features (right).
Each feature is displayed by a compact heat map, which can be expanded into a histogram.
Each heat map shows both the global distribution (gray) and the node’s neighborhood’s
distribution (orange).

neighbors, local distribution and global distribution are displayed. These neighborhood

feature distributions allow quick and easy filtering.

Show the Best First

Keeping the graph view from becoming an incomprehensible mess of edges means only

showing relevant, surprising, and interesting nodes. Importance, surprise, and user-interest

are all important aspects of discovery, so we blend them into the results that are shown first

to the user. Figure 3.5 illustrates how we visually encode the interest-surprise difference by

hue and the sum of both scores by saturation. Nodes ranked high tend to have brighter color

closer to purple, which becomes a clear visual cue for the user to quickly identify desired

nodes. FACETS is almost completely free of parameters, making it simpler for users to

explore their graphs.
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Figure 3.5: The colors used to encode surprise (blue) and interest (pink). The surprise and
interest scores are not mutually exclusive so ideal candidates may be both surprising and
interesting (purple).

Adaptive and Adjustable

Because user-interest varies greatly across users and even time, our design must be able

to track the user’s exploration behavior in order to approximate what is motivating them.

Adapting as the user explores helps provide critical insight into users’ latent objectives,

because they can see how they have explored and also may find what they seek. During

exploration, the users profile updates dynamically to illustrate a summary of their feature

traversal, while the graph view provides the topological traversal. It is not necessary to

preset any parameters in order for our adaptive algorithm to work, because the rankings are

done in a black-box fashion during users’ explorations. We allow them to directly manipu-

late the balance of features used in the interest calculation and choose which features form

the ranking. This enables the user to dynamically increase or decrease the importance of

any features during their exploration and immediately impact the interest ranking.

3.5 The FACETS Algorithm

In this section, we summarize the process of finding top-k most interesting and surprising

neighbors in Algorithm 3.6. Whenever a user selects a node to explore, we rank its neigh-

bors based on surprise and subjective interestingness we explained in the previous section.

For each of the neighbors, we compute surprise and interest scores for each feature and
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aggregate them based on feature weights λj . We blend those scores, and return the k nodes

with highest scores.

1: procedure RANKNEIGHBORS(node va, precomputed histograms for: global feature distribu-
tionsG and user profile distributions U , feature weights λj , weights for surprise ws and interest
wr)

2: if deg(va) ≥ 10000 then
3: Va ← top 10000 neighbors of va by highest degree
4:
5: else
6: Va ← all neighbors of va
7: end if
8: for all nodes vi in Va do
9: for all features fj in A do

10: s
(j)
i = DJS (Li,j ||Gj) . see Eq. 3.3

11: r
(j)
i = DJS (Li,j ||Uj) . see Eq. 3.5

12: t
(j)
i = wss

(j)
i + wr(1− r(j)i )

13: end for
14: T̂a[i] =

∑
fj∈A λjt

(j)
i

15: end for
16: TNodes = argmax1...k T̂a
17: return TNodes

18: end procedure

Figure 3.6: RankNeighbors

We evaluate the effectiveness and speed of FACETS using large real-world graphs.

FACETS is designed to support open-ended discovery and exploration suited to users’ sub-

jective interests, which is inherently challenging to evaluate [164]. Traditional quantitative

user studies (e.g., measuring task completion time) would impose artificial constraints that

interfere with and even potentially suppress how users would naturally explore based on cu-

riosity, counteracting the benefits that FACETS aims to foster. Given the exploratory nature

of FACETS, canonical quantitative metrics of “success” like precision, recall, MAE, and

RMSE [165, 166, 167] are not directly applicable here. For these reasons, we demonstrate

FACETS’s effectiveness through several complementary ways: (1) a small observational

study based on the study of exploratory systems from [164], (2) run time analysis of our

surprise and interest rankings on four real world graphs, (3) a comparison of our scoring
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with canonical node ranking techniques, and three case studies that investigate the results

of our algorithm on a movie graph and citation network.

3.5.1 Graph Datasets

We use the Rotten Tomatoes4 (RT) movie dataset as our main dataset, which is an attributed

graph that contains basic information per movie (e.g., released year), as well as users’

average ratings and critics scores. The observational study used only the RT graph. For

the analysis of runtimes, we also used the Google Web network, the DBLP co-authorship

graph, and the YouTube network datasets from the SNAP repository [168]. Table 3.2 shows

the graphs’ basic statistics and in which parts of our evaluation they were used.

3.6 Observational Study

We conducted a small observational study with semi-structured interviews and surveys.

Four participants were recruited through Georgia Institute of Technology mailing lists. We

screened for participants with at least basic knowledge of movies (e.g., enjoy occasionally

watching movies when they grow up). Three subjects were female and one was male, all

had completed a bachelor’s degree. They ranged in age from 21 to 27, with an average age

of 23.

The participants were provided a 10-minute tutorial of FACETS, which demonstrated

the different parts of FACETS and how they can be used to investigate the RT graph. They

were asked to think aloud for the whole study, so that if they became confused or found

something interesting we would be able to take notes. For all tasks, participants were free

to choose movies to inspect, so that they would remain interested during their exploration.

They could also look up movies on RottenTomatoes’ website if they were curious about

details.

Every participant performed three general tasks, each lasted for 10 minutes:

4http://rottentomatoes.com/
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Network Nodes Edges
Obs.

Speed
Case

Study Study

Rotten Tomatoes 17,074 72,140 X X X

DBLP 317,080 1,049,866 X X

Google Web 875,713 5,105,039 X

Youtube 1,134,890 2,987,624 X

Table 3.2: Graph datasets used in our observational study, speed testing, and case studies.
They were picked for their variety in size and domain. Rotten Tomatoes was used in the
observational study due to its general familiarity to the public.

1. Open exploration of the RT graph to help acquaint the participants with FACETS

2. Investigation of the surprising neighbors of movies using the neighbor summary view

(participants chose their own starting movies)

3. Exploration of movies, chosen by the participant, with consistent years (e.g., around

mid 90’s)

The first task was presented in order to encourage the participants to ask questions about

the system, as well as investigate how they would use it without being directed. We were

curious about which features they would use and if there were any behavioral patterns we

could find during exploration.

The second task was used to investigate quality of the surprising results. We let the

participants pick their own starting movies since it would be easier for them to work with

movies they knew. Our requirement was that the movie had at least five neighbors, so that

the exploration options weren’t trivial.

For the third task, we asked participants to choose and investigate a set of movies that

interest them, with consistent years, so that they could see an example of how FACETS

will adapt the interest ranking based on their recently clicked nodes. This task allowed the

participants to comment on and better understand the interest ranking, and allowed us to get

feedback on the quality of subjectively interesting results. The observations and feedback

from the study allowed us to understand how FACETS’s visual encoding guides participants

during exploration.

46



0 7

Learnable
Usability
Perceived Speed
Enjoyment
Likeability
Quality of Surprise
Quality of Interest

FACETS Qualitative Results
(Average Score)

Figure 3.7: The average qualitative responses for FACETS.

3.6.1 Observational Study Results

We measured several aspects of FACETS using 7-point Likert scales (provided as a survey

at the end of the study). The participants enjoyed using FACETS and additionally found

that our system was easy to learn, easy to use and likeable overall; although this is a com-

mon experimental effect, we find the results encouraging (shown in Figure 3.7). Users

found both our rankings to be useful during their exploration (see the last two bars in Fig-

ure 3.7). Several participants stated that the visualization combined with the interest and

unexpectedness rankings to be very exciting during exploration. One participant stated, “it

was exciting when I double clicked a node and saw how it was connected to my explored

movies”. FACETS was able to find subjectively interesting content for our participants as

they explored.

Participants primarily spent time in two areas, on the main graph layout and in the

neighborhood summary view. They used the neighborhood summary view to find and add

new nodes and then inspected the relationships of these newly added nodes in the graph

view. The table view was used primarily to select already-added nodes by name.

Two participants reported not fully understanding how the user profile was affecting the

results until the second task. The participants used a common strategy during exploration,
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in which they would add neighbors to a desired node and then spatially reorganize the

results by dragging some of the new nodes to a clear area. They repeated this process and

often inspected new nodes that shared edges with previous content.

In summary, our design goal was generally met: our participants deem FACETS as an

easy-to-learn and easy-to-use system with highly rated qualities of both interesting and

unexpected neighborhood suggestions.

3.6.2 Runtime Analysis

Next, we evaluate the scalability of FACETS over several million-edge graphs (Table 3.2).

Our evaluation focuses on demonstrating FACETS’s practicality in computing exploratory

rankings in time that is linear in the number of neighbors and of node attributes, returning

results in no more than 1.5 seconds for the 5 million edge Google Web graph that we

Figure 3.8: FACETS ranks neighbors in linear time, which is necessary to handle the large
numbers of nodes that a user may explore. We show the average time to calculate the JS
divergence for surprise and the combination of surprise and interest over a neighborhood
of size n. FACETS combines the ranks if there is sufficient user profile data. We tested with
contiguous node ordering to simulate normal exploration and random ordering to simulate
a user searching using the table view.
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Figure 3.9: FACETS scales linearly in the number of features (here n tracks three sizes of
neighborhood).

tested. We expect these runtime results will significantly improve with future engineering

efforts and optimization techniques. The experiments were run on a machine with an Intel

i5-4670K at 3.65 GHz and 32GB RAM.

One of our goals is sub-second rankings, so that interactions with FACETS are smooth.

This is why we have chosen to treat nodes in the tail of the degree distribution separately

than their modest degree neighbors.

We have analyzed the runtime of FACETS, in Figure 3.8, using the graphs from Table

3.2; all but the RT graph used eight synthetic features. We use both random ordering and

contiguous node ordering, displayed as Rand and Hop in Figure 3.8. Random ordering

simulates using the search functionality while hop ordering simulates hopping from one

node to its neighbors during exploration. High degree nodes have a higher chance of being

selected and account for the fact that hop sometimes is slower than random in Figure 3.8.

The graphs we tested demonstrate that the cost of the ranking is linear in the number of

neighbors in the neighborhood. Our ranking requires both a value lookup and a single JS

divergence calculation for each node and for each feature.
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As mentioned earlier, the surprise scores are precomputed and can be accessed quickly.

The cost to rank neighbors comes largely from the interest scores which cannot be precom-

puted. The cost, in JS divergence calculations, is O(n · f), and is asymptotically linear

in both the number of neighbors n and the number of features f . Given our use of MDL

histograms for the features, we can scale the number of features at low linear incremental

cost (see Figure 3.9). Each neighbor only requires exactly one JS divergence calculation

per feature (comparing the user profile and the local distribution).

Since many graphs contain triangles, it is very likely that redundant calls will be made

during a user’s exploration. We use this to our advantage and cache the distributions for

each visited node rather than re-fetching them each time. Graphs with higher clustering

coefficient may achieve better caching performance. For all but the YouTube graph, the

caching became memoizing as the entirety of the nodes could fit in the cache.

3.7 Case Studies

Here, we describe three case studies using two graph datasets — the first two using the

Rotten Tomatoes (RT) movie graph, and the last one using the DBLP co-authorship graph.

These case studies illustrate how FACETS helps the user explore graphs incrementally, gain

understanding, discovers new insights, and visualize them. FACETS adapts to the user to

provide surprising and interesting rankings to help the user explore relevant parts of the

graphs.

3.7.1 Movie Example I: Blade Runner

Our first user John likes mid-90’s post-apocalyptic and action films (shown as gray circles

in Figure 3.10, e.g., The Crow, Waterworld), many of which were well received by critics

and audience alike. John can add more films that he likes by exploring node-to-node or

by the search utility. After exploring a few films in such genre, John is particularly inter-

ested in Blade Runner. Based on what John has explored, FACETS returns top-ranking
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surprising and interesting films. The top-5 of each kind are displayed in Table 3.3 on the

left and in Figure 3.10. These movies’ interest (I) and surprisingness (S) scores are deter-

mined based on conventional measures of node importance; PageRank (PR), betweenness

centrality (BC), and eigenvector centrality (EV).

Many of the surprising movies would not considered important by canonical ap-

proaches, partly because FACETS’s surprise rank operates on both features and local graph

structure rather than global structure. Movies that are very heavily connected also face a

higher chance of matching the global distribution and therefore being less surprising.

While the notion of surprise is often considered “unimportant” by conventional metrics,

interest exhibits more variety in importance than surprise. This is especially apparent in

both this and the next case studies. Here we have selected types of films that have really

large viewership and represent a very large genre in modern film with many potentially

similar movies. Both the structure and features used in our subjective interest have lead the

ranking towards more conventionally important nodes (consider the high PR, BC, and EV

scores).

As the highest possible JS-divergence for a single feature is 1; the maximum divergence

is the sum of feature weights Λ. In this case study, we used five features, so interest scores

≤ 1.0 suggest that the user profile is in relatively good agreement with the proposed node.

Nodes with very low interest divergence are strong candidates that their neighborhood will

be of interest to the user.
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Example I

Current Movies Blade Runner

Movies Visited Waterworld, Braveheart, Pulp Fiction,
The Crow, Fargo

Top-k by Title I PR BC EV

Interest

L.A. Confidential 1.06 2.23 264k 7.10
Sin City 1.15 4.34 833k 44.7
Dredd 1.20 1.74 55k 43.3
V for Vendetta 1.23 2.99 620k 43.5
Heat 1.23 4.18 385k 11.0

Top-k by Title S PR BC EV

Surprise

The Creation of the Humanoids 2.93 0.19 851 0.58
Demon Seed 2.75 0.50 650 1.54
Natural City 2.69 0.28 437 0.74
Virtuosity 2.64 0.35 668 1.61
Soylent Green 2.59 0.57 6578 1.50

Table 3.3: Comparing FACETS’s surprise and interest ranking with common importance
rankings (I&S is interest or surprise, PR is PageRank (×10−4), BC is betweenness central-
ity, EV is eigenvector centrality (×10−3). Each example has a selected film, a user profile
at the time of selection, and the interesting and surprising neighbors.

Heat

Sin City V for Vendetta

Dredd

L.A. Confidential

The Creation of the Humanoids

Demon Seed

Natural City

Virtuosity

Soylent Green

Blade Runner

Bravehart
Waterworld

The Crow

Pulp Fiction

Interesting

Surprising

Figure 3.10: Visualizations of the Blade Runner case study. FACETS shows the main
anchor node in yellow and the neighbors colored according the surprise and interest using
the scale from Figure 3.5.
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3.7.2 Movie Example II: Toy Story

Our second user Bonnie investigates several children’s films that were criticized by the

critics, but still enjoyed by audiences (all have a lower critics’ score than audience score).

Bonnie hops from node-to-node across the listed films in the order they appear in Table

3.4. She then selects Toy Story. The results are displayed in Table 3.4 on the right and in

Figure 3.11.

As in the previous example, the surprising nodes tend not to be conventionally impor-

tant. Yet, consider the difference in importance of the interesting films versus the previous

example, many of these suggestions have significantly lower importance. The second pro-

file has less coherent features and they do not draw the the interest ranking towards conven-

tionally important nodes, despite that Toy Story is a very well connected node. Also note

that Monsters University and ParaNorman are featured in both the top-5 surprising and

interesting movies. The surprise score and interest score are not counter to each other. In

Example II

Current Movies Toy Story

Movies Visited A Bug’s Life, Kung Pu Panda, Jumanji,
The Incredibles, How to Train Your Dragon

Top-k by Title I PR BC EV

Interest

Monsters University 0.54 0.76 1070 29.3
Rio 0.63 1.66 25464 57.4
Toy Story II 0.70 1.84 55486 59.1
The Iron Giant 0.71 1.43 54079 46.3
ParaNorman 0.71 0.94 23291 15.1

Top-k by Title S PR BC EV

Surprise

Buzz Lightyear of Star Command 3.15 0.14 12 2.14
Small Fry 3.01 0.17 132 3.10
Monsters University 2.64 0.76 1070 29.3
Cloudy With a Chance of Meatballs 2.46 1.28 1027 42.5
ParaNorman 2.45 0.94 23291 15.1

Table 3.4: Comparing FACETS’s surprise and interest ranking with common importance
rankings (I&S is interest or surprise, PR is PageRank (×10−4), BC is betweenness central-
ity, EV is eigenvector centrality (×10−3). Each example has a selected film, a user profile
at the time of selection, and the interesting and surprising neighbors.
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Figure 3.11: Visualizations of the Toy Story case study. FACETS shows the main anchor
node in yellow and the neighbors colored according the surprise and interest using the scale
from Figure 3.5

fact, this is an excellent example, because these films are both surprising and subjectively

interesting!

3.7.3 DBLP Example: Data mining and HCI researchers

Our third example uses data extracted from DBLP, a computer science bibliography website

5. The graph is an undirected, unweighted graph describing academic co-authorship. Nodes

are authors, and an edge connects two authors who have co-authored at least one paper.

Our user Jane is a first-year graduate student new to data mining research. She just

started reading seminal articles written by Philip Yu (topmost orange node in Figure 3.12).

FACETS quickly helps Jane identify other prolific authors in the data mining and database

communities, like Jiawei Han, Rakesh Agrawal, Raghu Ramakrishnan, and Christos

Faloutsos; these authors have similar feature distributions as Philip Yu (e.g., very high

degree). Jane chooses to further explore Christos Faloutsos’s co-authors. FACETS suggests

5http://dblp.uni-trier.de
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Scott E. Hudson

John M. Carroll

Catherine Plaisant

Chris North Ben Shneiderman

Jiawei Han

Jeffrey F. Naughton

Raghu Ramakrishnan
Rakesh Agrawal

Interesting

Interesting

Interesting

Surprising

Figure 3.12: Visualization of our user Jane’s exploration of the DBLP co-authorship graph.
Jane starts with Philip Yu. FACETS then suggests Christos Faloutsos and several others as
prolific data mining researchers. Through Christos, FACETS suggests Duen Horng Chau
as a surprising author as he has published with both data mining and human-computer
interaction (HCI) researchers, like Brad Myers. Through Brad, FACETS helps Jane discover
communities of HCI researchers, including Ben Shneiderman, the visualization guru.

Duen Horng Chau as one of the surprising co-authors, who seems to have relatively low

degree (i.e., few publications) but has published with highly-prolific co-authors. Among

these is Brad Myers (leftmost orange node in Figure 3.12), who publishes not in data

mining, but in human-computer interaction (HCI). This exploration introduces Jane to a

new field, and she wants to learn more. Using FACETS’s interest-based suggestion, she

discovers a community of co-authors who have published with Brad; among them, Mary

Beth Rosson further leads to another community of HCI researchers, which includes Ben

Shneiderman, the visualization guru!

In this chapter, we presented FACETS, an integrated approach that combines visualiza-
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tion and computational techniques to help the user perform adaptive exploration of large

graphs. FACETS overcomes many issues commonly encountered when visualizing large

graphs by showing the user only the most subjectively interesting material as they explore.

We do this by ranking the neighbors of each node by surprisingness (divergence between

local features and global features) and subjective interest based on what the user has ex-

plored so far (divergence between local features and user profile).

Our FACETS algorithm is scalable and is linear in the number of neighbors and linear

in the number of features. We evaluated FACETS with a small observational study, wherein

participants consistently rated FACETS well. We demonstrated the effectiveness of FACETS

through case studies using the Rotten Tomatoes movie graph and the DBLP co-authorship

graph, and comparison with canonical importance ranking measures. Despite the old adage

that you can’t see the forest for the trees, with FACETS you can see the graph through its

nodes.
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Thrust II

Constructing, Refining, and Performing

Graph Queries
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OVERVIEW

By utilizing techniques, approaches, and the FACETS system in Thrust I: Local Graph Ex-

ploration, an analyst can quickly collect numerous interesting patterns and subgraphs from

their network. Other exact matches or similar subgraphs may exist, but be topologically far

from the currently explored region. Manually scouring for these would be a challenging

and tedious task.

How can they locate more of these patterns or find similar matches in the rest of their

network? The data mining techniques of subgraph matching and graph querying offer an

automated solution. Graph querying improves the reach of local exploration once a pattern

is known (or even partially known).

Currently graph querying requires complex querying languages; however, we show that

queries can instead be formed via a visual, interactive system. Querying is often an itera-

tive process [8, 9] that can benefit greatly from visual aids. Making such a system requires

both algorithms and visualization working in tandem, as few algorithmic approaches have

been designed for both interaction and visualization. This Thrust focuses on our tech-

niques, approaches, and systems that: help analysts visually construct and refine queries;

and algorithms to use these queries to seek out subgraphs of interest from the network.

• MAGE (Chapter 4) a scalable, multicore subgraph matching approach that supports

expressive queries over large, categorically-attributed graphs.

• VISAGE (Chapter 5) an interactive visual graph querying approach that empowers

analysts to construct, refine and dispatch expressive queries, without writing complex

code.
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CHAPTER 4

MAGE: MATCHING APPROXIMATE PATTERNS IN RICHLY-ATTRIBUTED

GRAPHS

Given a large graph with millions of nodes and edges, say a social network where both its

nodes and edges have multiple attributes (e.g., job titles, tie strengths), how to quickly find

subgraphs of interest (e.g., a ring of businessmen with strong ties)? We present MAGE,

a scalable, multicore subgraph matching approach that supports expressive queries over

large, richly-attributed graphs. Our major contributions include: (1) MAGE supports graphs

with both node and edge attributes (most existing approaches handle either one, but not

both); (2) it supports expressive queries, allowing multiple attributes on an edge, wild-

cards as attribute values (i.e., match any permissible values), and attributes with continu-

ous values; and (3) it is scalable, supporting graphs with several hundred million edges. We

demonstrate MAGE’s effectiveness and scalability via extensive experiments on large real

and synthetic graphs, such as a Google+ social network with 460 million edges.

4.1 Introduction

Graphs are a convenient and ubiquitous means to represent many naturally occurring pat-

terns. Rich with information, many graphs contain subgraph patterns that capture inter-

esting dynamics among entities, but because of the size and complexity of these graphs,

spotting such interesting patterns can be a difficult task. For instance, an analyst may want

to better understand the inner working of criminal activities by analyzing an intelligence

network of various entities (e.g., people or events) connected with edges denoting gath-

ered intelligence (as in Figure 4.1). Sometimes, the analyst may have some initial ideas

about how certain suspicious activities may look like. Then, he could use subgraph match-

Chapter adapted from work at BigData’15 [Paper Link] [76]
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Figure 4.1: An illustrative example showing how MAGE finds patterns in an intelligence
graph (middle), which has both node and edge attributes. The node attribute is the entity
type, which can be a Person, an Event, or a Location, and the edge attribute is the amount of
gathered intelligence for a pair of entities, which can be Confirmed, Suspected, or Unlikely.
(Right) A sample query that can be formed in MAGE and a potential result. The query looks
for two indirectly related individuals, who were both confirmed at the location of some
event and are also believed to have attended the event (denoted by two lines connecting the
corresponding nodes). The node labeled with a star indicates a wildcard, which can take
any attribute value. A node’s identifier is displayed next to it. (All figures are best viewed
in color.)

ing techniques to find potentially dangerous individuals. However, he may face multiple

technical challenges.

A Motivating Example. Let us consider the intelligence graph in Figure 4.1. Here,

the node attribute is the entity type, which can be a Person (orange circle), an Event (green

square), and a Location (purple triangle), and the edge attribute is the amount of gathered

intelligence for a pair of entities, which can be Confirmed (dotted line), Suspected (wavy

line), and Unlikely (line with plusses).

The top right corner of Figure 4.1 shows one query that our analyst may issue, which

looks for two indirectly related individuals, who were seen to have appeared at the same

location (thus, “confirmed” to be linked to a location) but unclear whether they attended an

event together (thus, “suspected” to be linked to an event).

One challenge here is that the analyst might not know what values to assign to some
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of the nodes and edges in the query; so instead of guessing or assigning an arbitrary value,

the analyst may want to assign a node or an edge with a wildcard attribute value, a feature

that would allow the analyst to more freely explore different hypotheses. However, it is not

supported by most existing subgraph matching techniques.

Another challenge is that the analyst might want to test multiple hypotheses, as in the

query in Figure 4.1 where the individuals must be either confirmed or suspected of being

involved in the event. Rather than forming several distinct queries for each of these values

and then combining the results, the analyst should be able to use a single query to retrieve

matches that support some, or all, of the multiple hypotheses.

A further challenge is that the analyst may benefit from seeing both exact and near

matches, because oftentimes an initial pattern may only approximate what an analyst wants

to find eventually. Existing subgraph matching approaches that return only exact matches

(if any) may not help the analyst evolve his query patterns in this regard. For the query

in Figure 4.1, the system should be able to return a match filling in the wildcard, e.g.,

the person entity corresponding to node 3 in the result. Even with the wildcard, the exact

specified structure may not exist in in the graph; under this scenario the system would return

a “best-effort” match of the query containing additional nodes and edges. By generating

both exact and near matches, we can provide the user with the top-k most closely matched

subgraphs even if their initial query was not exactly present in the input graph.

Limitations of Existing Techniques. A representative set of early work on inexact

pattern matching on graphs include G-Ray by Tong et al. [75], TALE by Tian and Patel

[79], and SIGMA by Mongiovı́ et al. [169]. More recently, Khan et al. proposed the NeMa

approach [78], Fan et al. proposed a set of incremental pattern matching algorithms [81,

80] as well as the TopKDiv approach [80], and Cheng et al. proposed the kGPM framework

[170]. The main limitations of these techniques are that they either (i) do not support edge

attributes, (ii) need computationally-heavy indexes precomputed for the input graph, or (iii)

return results that can significantly deviate from the query pattern, which may be difficult
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for users to comprehend.

Our Contributions. We present MAGE, a pattern matching system for graphs with

node and edge attributes. MAGE, short for Multi-Attribute Graph Engine, overcomes

many of the challenges and limitations outlined above. It produces top-k closest subgraph

matches for a large variety of attributed input graphs. We demonstrate in our experimental

evaluation that MAGE is a scalable tool that works for graphs from different domains, from

intelligence applications to understanding the patterns of movie success.

Specifically, the contributions of this chapter include:

• Support for node and edge attributes. MAGE supports graphs with node and edge

attributes (categorical or continuous via discretization). Using both node and edge

attributes expands the effectiveness of our system on real world data and increases

the types of questions that can be answered through graph querying.

• Flexible queries with rich attributes. MAGE improves the ease of querying on

graphs. In some cases, query information might be limited and the exact attribute

of a node or edge may be unknown. MAGE allows the specification of queries with

wildcards and across multiple categorical attributes.

• Fast & scalable algorithm. MAGE leverages random walk with restart (RWR)

steady-state probabilities as proximity scores between nodes to determine how well

a subgraph matches the query. We propose a fast and highly scalable multicore ap-

proach for RWR calculations. We evaluate MAGE with real and synthetic graphs

with several hundred million edges to demonstrate its scalability.

4.2 Problem Definition and Notation

Here, we formalize the subgraph matching problem that MAGE aims to solve.

In its general form, we are given two graphs G and Q and we wish to know if G con-

tains a subgraph that is equivalent toQ. Table 4.1 describes the symbols used in the chapter.
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Symbol Description

G n× n adjacency matrix for G
A n× t node-attribute matrix for graph G
Q Query subgraph to be extracted from G
G ′ (m+ n)× (m+ n) linegraph-modified bipartite graph
A′ Node-edge-attribute matrix for graph G ′
Q′ Query subgraph after edge augmentation
M A bijective mapping between edges of G and edge-nodes in G ′
〈s, t〉 An edge leading from node s to node t
n Number of nodes in G
m Number of edges in G
t Number of distinct categorical attributes
i,j & u,v Indices of nodes in Q and in G respectively.
λ Ratio of approximated nodes and edges with correct attributes

to the total number in a result

Table 4.1: Symbols and terminology used in this chapter

This problem is often referred to as the subgraph isomorphism problem. Unfortunately, the

subgraph isomorphism problem is NP-Complete [66], making all general solutions com-

putationally infeasible for even modest sized graphs.

The problem we are solving is subtly different than the pure subgraph isomorphism

problem. Our problem definition can be formally stated as follows:

Given: (i) A graph G whose nodes and edges have categorical attributes, (ii) a query graph

Q showing the desirable configuration of nodes connected with edges, each assigned

one or more attribute values (or a wildcard), and (iii) the number of desired matching

subgraphs k.

Find: k matching subgraphs Qi (i = 1, ..., k) that match query graph Q as closely as pos-

sible, according to a goodness metric (which we cover in the Methodology section).

4.2.1 Preliminary: Querying on Node Attributes

Several approaches have been proposed to subgraph isomorphism problem. The work by

Tong et al. proposes the G-Ray algorithm [75], which is a best-effort inexact subgraph
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matching approach that relies heavily on RWR or personalized page rank values as the

selection criterion when constructing query results. This approach uses single nodes as

the restarts when calculating the RWR values. We leverage this approach but considerably

modify it to allow multiple attributes as restarts in the RWR approximations (see Section

4.4.4 for details). Approximate RWR is still a computationally expensive step that must

be performed often. In Section 4.4.1, we show our approach to reducing query latency by

decreasing RWR calculation times.

While G-Ray is an integral facet of MAGE, the limitations of the original algorithm are

far too constrictive. The G-Ray algorithm is inadequate in supporting expressive query-

ing as it does not support (i) attributed edges, (ii) unknown query attributes, (iii) multiple

attributes, and incurs (iv) sizable query latencies on large graphs. These points are what

we aim to address with MAGE. Using our linegraph augmentation approach, we support

edge attributes, and with wildcards and multiple attributes, we support queries with limited

information. To address the speed and scalability we utilize an approximate parallel RWR

technique to quickly calculate the data needed to find good candidate matches.

4.3 MAGE Overview

Unlike many previous systems, we focus on both the edge and node attributes in G. We

have chosen to use an edge-augmentation method based on the intuition from the linegraph

transformation [171]. Under the canonical linegraph transformation, each vertex in the

line graph L of G is an edge from G. Two vertices in L are connected if and only if their

corresponding edges (from G) share a common endpoint in G. Figure 4.2 demonstrates an

example transformation with the key linegraph transformation occurring in the rightmost

two figures.

By making use of the line-graph transformation on the starting graph G, we can produce

an attributed line graphLwhere each of the edges in G is represented by a node inL. Rather

than working with both L and G, we create G ′ which combines aspects of both G and L.
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(a)

(c)
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(d)

Figure 4.2: The linegraph transformation and the edge augmentation approach used to sup-
port edge and node attributes in MAGE. (a) shows the input graph. (b) is the intermediate
step of the canonical linegraph transformation of G, where a node for each original edge
is created. (c) visualizes L(G) or L is the linegraph of G in which all edges from G that
shared a node in G are now connected as the nodes of L. (d) demonstrates edge augmen-
tation wherein we embed the edge-nodes of L(G) directly into the original graph to create
G ′.

We achieve this by transforming each edge in G into an edge-node in G ′. This new edge-

node is connected to the same vertices in G ′ that it connected to as an edge of G. This

process is illustrated with a toy graph in Figure 4.2, where the edge-nodes are the square

nodes splitting each edge of G. Under this formulation, no two nodes in G will be directly

connected in G ′. Similarly, no two newly introduced edge-nodes will be directly connected

in G ′. The structure of the newly created graph is bipartite between the set of original nodes

and the set of new edge-nodes. We make use of this fact in the development of MAGE.

4.3.1 MAGE Subroutines

We divide the process of discovering matching subgraphs into several key steps: (i) finding

the initial nodes to start our localized search, then (ii) finding nearby nodes that fulfill

or approximate the desired attributes and (iii) approximating the structure of the edges

interconnecting nodes from steps i and ii.
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1: procedure APPROXQUERY(G ′ A, Q′)
2: Initialization
3: i← Detect-Candidate
4: i corresponds to a node u of Q′
5: for all Nodes u in the query Q′ do
6: for all edges 〈u, v〉 from u to neighbor v do
7: find node j by Local-Search
8: approximate 〈u, v〉 with 〈i, j〉 via Linker
9: edge 〈u, v〉 is fulfilled

10: end for
11: end for
12: end procedure

Figure 4.3: An overview of the approach used in finding an approximate subgraphs.

Detect-Candidate. The first node of each query approximation is located in the graph

using Detect-Candidate in line 4 of Algorithm 4.3. This routine leverages attribute filtering

and primarily subgraph centerpieces suggested in [172]. Detect-Candidate selects the most

central node of the query first to help narrow the scope of the candidate search.

Local-Search. Given a partially fulfilled set of query nodes, Local-Search (line 8 of

Algorithm 4.3) will locate a node in G ′ corresponding to an unfulfilled node from Q′. It

achieves this by using RWR values as weights for the nearby nodes with attribute matches.

This approach will select closer to the approximated query, keeping the selected nodes in

the local area of the current approximated nodes.

Linker. The Linker, line 9 in Algorithm 4.3, approximates the query’s edges in the

dictionary graph. If the two selected nodes of the real graph are connected the edge is

returned; otherwise, the shortest path is used as an approximation of the edge. This shortest

path may introduce additional nodes inorder to complete the pattern. The approximate

solutions will add to the query, not remove from it.
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4.3.2 Supporting Multiple Attributes

Often in real graph datasets, nodes and edges can have multiple fields of data. Similarly,

a user may want to query for one or more attributes at the same time on a node or edge.

These are important considerations and they are fully supported in MAGE by allowing lists

of variables on each query node or edge. Each list of attributes are combined to produce

query results with a logical OR for each item in the list during query time. This allows

for the quick generation of queries across multiple node or edge attributes. Multi-attribute

queries greatly extend the user’s query possibilities and, therefore, exploratory power.

4.3.3 Supporting Wildcards

In order to ease the construction of query-graphs as well as extend usability of MAGE, we

developed wildcard attributes. The wildcard allows MAGE to match any attributed node or

edge to a wildcard node or edge, respectively, while maintaining the overall query connec-

tivity. This is carried out by relaxing the node and edge attribute constraints used during

the acquisition of nodes during query-result construction. Our experimental investigations

suggest that our approach to wildcards is efficient and does not incur significant query

overhead.

4.4 Methodology

The general approach taken for MAGE is explained in Procedure 4.4 and the subsequent

procedures are described in the following sections.

4.4.1 Random Walk with Restart (RWR)

MAGE uses proximity scores between nodes in data graph G and query graph Q to deter-

mine how well a subgraph Qi matches Q. Specifically, the proximity between nodes i and

j in a graph is the RWR value when node i is used as the restart point. The number of RWR
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values needed to find a matching subgraph is significant, because we use them to rank pos-

sible candidate nodes. These calculations a major contributor to the overall runtime of the

system and will be discussed in the experimental evaluation section. The RWR values in F̂ ′

(see Equation 1) are used to rank the goodness of nearby candidate nodes; unselected nodes

that are near to the partially constructed query receiver higher RWR values and are there-

fore more likely to be chosen. The power iteration multiplies a F̂ by the sparse adjacency

matrix G for the graph.

We have implemented a parallelized, sparse, power method that allows the fast calcu-

lation of RWR vectors. The canonical power-iteration method is a common approach to

determine the RWR values see Equation (1). Decompose G row-wise into p submatrices

each with m/p rows (call them G1...Gp). Each Gi is zero everywhere except its m/p rows

such that they sum to G, see Equation (2).

F̂k+1 = αG · F̂k + Ŷ (4.1)

F̂k+1 = α (G1 + G2 + ...+ Gp) · F̂k + Ŷ (4.2)

F̂k+1 = αG1 · F̂ + αG2 · F̂k + ...+ αGp · F̂k + Ŷ (4.3)

For each node considered as a restart location the vector Ŷ is set to the random restart

probability 1 − α. Now using Equation (3) each submatrix-vector multiplication can be

calculated separately in parallel and the results aggregated. Each iteration Fk+1 is normal-

ized to unit length and used in the next iteration. We choose only to synchronize the parallel

computation at the end of each iteration rather than during it. This relaxation was chosen

to maximize memory bandwidth during the calculation. We recommend choosing p as the

number of available cores.
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4.4.2 Primary Subsystems

Detect-Candidate and Local-Search. Both detecting the initial candidates and searching

for nearby candidates follow the same general approach in our algorithm. At its heart the

equation picks the new nodes heuristically based on their attribute and associated R score

as calculated in Equation (4). The heuristic works by taking the product over all nodes

adjacent to v ∈ Q′ and summing their RWR scores with nodes j ∈ G ′ at least one of whose

attributes matches a neighbor u’s attribute.

R(Q′, i) =
∏

u=Neigh(v)∈Q′

f
I(u,v)
j ·

(
1

nu

∑
ja∈ua

fj

)1−I(u,v)

(4.4)

Where nu is the total number of nodes with attributes from u, is used as a normalizing

factor. It’s leveraged in order to keep common attributes from having over-sized scores.

The sum goes over all nodes j with an attribute common with u The individual RWR

values between nodes i and j are fj calculated in Equation (1). Where I(u, v) is the indi-

cator function; returning 1 if edge (u, v) is already used in the partial query solution and 0

otherwise.

Linker. Given two nodes from G ′ the Linker computes a path connecting them. The

implementation is an efficient modification of Prim’s algorithm. We consider the “best

path” as the path connecting the two nodes with largest RWR value when a direct link–one

unused in the approximate solution–is not available. This score is the sum of RWR values

over the whole length of the path.

4.4.3 Supporting Edge Attributes

In order to support edge attributes, a method is needed that allows the incorporation and

later selection of data on each edge. For this we have chosen to embed an edge-node in

each edge of G, see Procedure 4.5.
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Require: Fully-attributed graph G, attribute graph A, query graph Q, and desired number
of results k

Ensure: k node-attribute matched subgraphs from G
1: procedure MAGE(G, A, Q, k)
2: G ′ = Linegraph-Augmentor(G)
3: Q′ = Linegraph-Augmentor(Q)
4: Aw = Wildcard-Attribute-Inserter(A)
5: for i=1:k do
6: Q′i = ApproxQuery(G ′,Aw,Q′)
7: Qi = Linegraph-Reverter(Q′i)
8: end for
9: return Qi where i = 1 : k

10: end procedure

Figure 4.4: Detailed MAGE Algorithm

Linegraph Augmentation

The line graph augmentation algorithm is presented in Procedure 4.5 and operates in O(m)

wherem is the number of edges from G. This is precomputed a single time before querying

begins.

Require: Edge-attributed n× n graph G
Ensure: Edge-embedded (m + n) × (m + n) graph G ′ and a mapping M from edges to

newly created edge-nodes

1: procedure LINEGRAPH-AUGMENTATION(G)
2: Let S be an all-zero (n×m) matrix
3: for all u = 1→ m edges, ei,j ∈ G do
4: S(u, i) = 1
5: S(u, j) = 1
6: M(u) = ei,j
7: end for
8: G ′ return G ′
9: end procedure

Figure 4.5: Linegraph-Augmentation

This transformation creates G ′, a (m + n) × (m + n) adjacency matrix. Expanding

both dimensions of our adjacency matrix by a factor of m may seem expensive in memory
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usage; however, G ′ is guaranteed to be bipartite between the original nodes and the new

edge-nodes. Because only original nodes can be connected to edge-nodes, we have only

the m × n and n × m regions of our augmented matrix that can possibly contain values.

We can derive the maximum matrix density, ρmax, as follows:

ρmax =
2mn

m2 + 2mn+ n2
(4.5)

if the graph is undirected only mn edges need to be stored. Because we use sparse data

structures, the memory for this augmentation grows at a linear rate with the number of

edges.

The matched subgraph results produced by MAGE are still embedded with edge-nodes

and should therefore be converted back to the original graph format. The linegraph-reverter

(see Procedure 4.6) serves the purpose of returning our modified results to the style and

format specified with the input graph.

Require: Edge augmented query result Q′i
Ensure: Attribute matrix Qi

1: procedure LINEGRAPH-REVERTER(G)
2: for all node-edge uj ∈ Q′i where j = 1→ q do
3: s = source edge leading into uj
4: t = target edge leading out of uj
5: remove edge 〈s, uj〉
6: remove edge 〈uj, t〉
7: replace edge-node uj with edge from M(uj)
8: end for
9: return Qi

10: end procedure

Figure 4.6: Linegraph-Reverter

4.4.4 Supporting Multiple Attributes

The categorical attribute matrix A is an n × t sparse matrix where there are t distinct

attribute categories for each of n nodes. Each row of A represents a node while each
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column represents a single categorical variable. Each node’s categorical data is encoded as

a–usually sparse–vector of ones.

While t can be very large, generally the mapping of categorical attributes to nodes

is very sparse. Practically, A utilizes a minor amount of memory. We support multiple

attributes on each edge and node, and allow them to be selected via logical OR. This is

done by allowing the rows of A to have multiple values at once. These rows are leveraged

during the attribute-centric RWR carried out in line 5 of Procedure 4.4. By serving as

restart sources during the RWR calculations, the correctly attributed nodes are given larger

proximity scores and therefore are more likely to be selected as a result.

4.4.5 Supporting Wildcards

To support the wildcard attribute we have created a universal attribute applied to all nodes

and edges. This attribute is one among many that each edge or node may have at any time.

The function labeled Wildcard-Attribute-Inserter on line 4 of Procedure 4.4 works by

inserting a new and distinct attribute node in the attribute matrix A that points to all nodes.

All that needs to be done to achieve this is to append a row of ones onto the attribute matrix

A. This technique works because the MAGE algorithm will select this wildcard attribute

regardless of whatever other attributes a node or edge may have. When there are multiple

choices to fulfill a wildcard the one with largest RWR value is selected, otherwise ties are

broken by random selection.

4.5 Evaluation

We evaluate multiple important aspects of MAGE, such as speed, memory usage, and ef-

fectiveness on both large real and synthetic graph datasets, e.g., 460 million edge Google+

graph[173, 174]. Experimenting on real graphs allows us to better understand how MAGE

works in practice, while experimenting on synthetic ones let us carefully control exper-

imental parameters and observe MAGE’s responses. Besides investigating how MAGE’s
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speed scale with the graph size, we also study how supporting wildcards and multiple at-

tributes in the graph queries would affect speed.

All tests were run on an Linux machine equipped with an Intel Core i5-4670K Haswell

Quad-Core CPU (3.8 GHz) and 32GB of RAM. All code was written in C++.

4.5.1 Graph Datasets

Google+ Social Network. We have examined the scalability of our system using the at-

tributed social network from Google+ [173, 174]. The dataset consists of four snapshots,

each taken at different months of 2011. Their sizes range from 4.6M nodes and 47M edges

for the smallest, to 28M nodes and 460M edges for the largest.

Rotten Tomatoes (RT) Movie Graph. We tested MAGE on a modest-sized directed

graph constructed out of the Rotten Tomatoes (RT) movies. The graph contains more than

20,000 movies with edges connecting similar movies (based off of Rotten Tomatoes crowd-

sourced film similarity). MAGE operates on categorical attributes, so continuous fields must

be encoded categorically to be queryable in our system. For continuous fields, discretiza-

tion offers several methods to aggregate multiple values into categories. We used quartiles

to discretize the continuous movie-related values except for movie similarity which we dis-

cretized it to either weak or strong. In order to test the effectiveness of MAGE we queried

this graph and present the examples results in Figure 4.11.

Synthetic graphs. For synthetic graphs we use stochastically generated Erdős-Rényi

(ER) random graphs (parameterized by the number of nodes n and edges m) and Watts-

Strogatz (WS) graphs (parameterized by the number of nodes n, the node degree k, and

the rewiring probability p) [175, 176]. The parameter values used when generating the

synthetic graphs are presented in Table 4.2. In the table, n and m are the number of nodes

and edges, and k is the node degree used in the WS graph generation. The WS graphs are

generated using p = .01 rewiring chance.
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Experiment Erdős-Rényi Graph (ER) Watts-Strogatz Graph (WS)

Query (Fig 4.7) n = 1.5M to 15M n = 10M
m = 2M to 162M k = 2 to 10

RWR (Fig 4.8) n = 15M n = 15M
m = 15M to 415M k = 2 to 28

Wildcard (Fig 4.9) n = 10M n = 2M
m = 10M k = 6

Memory (Fig 4.10) n = 15M n = 15M
m = 15M to 375M k = 4 to 25

Table 4.2: Synthetic test graph sizes and parameters for each experiment. n and m are the
number of nodes and edges, and k is the node degree used in the WS graph generation. The
WS graphs are generated using p = .01 rewiring chance.

4.5.2 Scalability and Speed

RWR requires two parameters; the fly-out or restart-probability and the number of itera-

tions, which we set to 0.15 and 10 respectively. MAGE performs queries in linear time with

the number of edges in each graph (Figure 4.7). For both the ER graphs and the small-

world WS graphs, the increase in query time is linear in the number of edges, suggesting

good scalability. For the synthetic graphs attributes were randomly assigned to nodes and

edge uniformly at random when the2 graph was generated. Three general query structures
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are explored for various sizes of graph; a 5-node 4-edge linear query, a 5-node 4-edge star,

and a 5-node clique.

RWR Results.

The timely calculation of RWR values are essential to the MAGE algorithm. We test our

approach on both synthetic WS and ER graphs as well as snapshots of various sizes from

the Google+ social network dataset. The ER graphs were generated with randomly with

increasing number of edges, while the WS graphs were generated with (p = 0.01) and

varying numbers of edges (see Table 4.2 for details). Each measurement is an average of

the runtime for multiple stochastically generated networks at each m. The results for our

parallelized RWR implementation are presented in Figure 4.8.

The ER graphs exhibit worse performance than WS graphs due to the constant ran-

dom memory accesses during the parallelized matrix multiplication step. Our experimental

results, both on real and synthetic graphs suggest excellent scalability of the core RWR

algorithm.
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Wildcard and Multi-attribute Cost.

In order to measure the potential added overhead of wildcards, we tested across multi-

ple sizes of graph with varying numbers of wildcards in a common set of query. Multi-

attributes are represented as multiple 1’s in A and can be easily added for little overhead.

Data-rich graphs can be queried in MAGE with minor increases in query latency and mem-

ory footprint. Multi-attributes make using wildcards far more powerful. For each number

of wildcards, we averaged multiple runs and compare these against the same query graph

with specified attributes. The queries used were a 6-node linear query, a 6-node star and

a 5-clique. The wildcard counts in Figure 4.9 could were both edge and node wildcards

selected at random.

Figure 4.9 shows the query time when using wildcards relative to a query with only

normal attributes. The wildcard overhead increases linearly with the number of wildcards.

This suggests that large queries can safely incorporate wildcards without computational
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Figure 4.9: The relative response time for queries containing wildcards tested on an Erdős-
Rényi graph with 10M nodes and edges, compared against the baseline query without wild-
card (horizontal black dotted line). Query time is linear in the number of wildcards in the
query.
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constraints, reducing the cognitive load on MAGE users during their data mining.

4.5.3 Memory Usage

We performed an experiment to measure the memory usage of edge-augmentation. In the

directed case the full augmented matrix must be stored; however, in the undirected case

only half of the matrix is necessary. We measured this cost because it is a potentially

memory-intensive step. MAGE uses 2.5× the augmentation memory during full querying.

In Figure 4.10, we compare the memory footprint of each graph before and after edge

augmentation (as previously explained in Secton 4.4.3) for graphs of increasing size.

4.5.4 Effectiveness

Measuring the effectiveness of approximate graph queries is a nontrivial task with two

major challenges. The first problem stems from measuring similarity between the result and

query, considering both structure and attributes. The second challenge is that the usefulness

of a result is highly subjective. Human evaluation will be important in proving the overall

effectiveness of our approach, and we plan to perform it in our future work. Here, we uses
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existing work to inform the design of our experiments.

Method. Taking inspiration from related pattern matching work (e.g., [84]), we chose

to modify graphs by injecting new patterns into them and then seeking those patterns with

MAGE. With the approximations from MAGE, we can analyze the quality of matches with

knowledge of the exact number of the desired pattern. We tested our approach against

synthetic graphs and the RT movie graph. The synthetic graphs were generated in the same

way as the previous experiments (see Section V-a); however, the patterns were generated

with 6 distinct attributes per edge and 12 per node both of which were assigned randomly

during graph generation. In the RT graph, attributes were randomly sampled from the

empirical attribute distributions. In Table 4.3, we present 5 general query types: (i) a short

line of 6 nodes, (ii) a long line of 15 nodes1, (iii) a star with 15 spokes, (iv) a barbell with

two 3-cliques connected by a path of length 3, and (v) a 7-clique [75].

For each query pattern, we calculate the average over the top 20 results for several

1Note that we also include a pattern that is a longer line, because short linear queries are trivially express-
ible in many other systems.

Graph Query % Extra % Extra λ
Type Shape Nodes Edges Score
Erdős-Rényi Line (short) 11 ±0.7 14 ±0.9 0.89
(ER) Line (long) 20 ±0.8 26 ±1.1 0.81

Barbell 18 ±0.7 18 ±0.6 0.84
Star 39 ±0.8 44 ±1.1 0.71
Clique 64 ±1.8 17 ±0.1 0.77

Watts-Strogatz Line (short) 0 ±0.0 0 ±0.0 1.00
(WS) Line (long) 0 ±0.0 1 ±0.1 1.00

Barbell 24 ±3.5 28 ±3.7 0.79
Star 39 ±6.5 51 ±9.9 0.69
Clique 104 ±0.4 35 ±0.0 0.66

Rotten Tomatoes Line (short) 66 ±1.8 30 ±1.3 0.73
(RT) Line (long) 84 ±1.6 87 ±2.2 0.54

Barbell 96 ±2.9 95 ±1.9 0.51
Star 104 ±2.8 109 ±2.6 0.50
Clique 110 ±3.4 103 ±4.9 0.49

Table 4.3: The average similarity of the first 20 results and the query across several graph
types. The λ similarity score is a modifcation of the Jaccard index and is the ratio of nodes
and edges with attributes matched to the query normalized by the union of nodes and edges.
Several types of queries, ranging in complexity, were tested over both sythetic (ER, WS)
and real (RT) graphs. MAGE produces results with high similarity to the query.
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metrics. Table 4.3 displays the average %-difference in size between the queries and their

matches. We also measure the quality of results using λ, a modified Jaccard Index measure

over categorical variables which has been used in [177]. We compose the λ-similarity by

taking the size of the set-intersection of nodes and edges from the query with the result

and normalize it by the size set-union of the same query-result pair. When a result closely

matches the query, λ → 1, if the result has either extra nodes or nodes with different

attributes then λ < 1.

MAGE’s goal is to detect approximate matches to a user’s desired query; Table 4.3

shows that the algorithm is capable of extracting results with good similarity. The WS

graphs work well with linear queries, because their construction guarantees consistent

paths, but because these graphs also have a high clustering coefficient, they respond poorer

on clique queries. The RT queries generally perform worse than the synthetic graphs, be-

cause the RT contains several very low occurrence attributes. When included in a query,

these rare attributes require an approximate path which adds additional nodes and edges,

decreasing the λ-similarity. In general detecting exact and approximate cliques is a very

challenging problem. When discovering initial candidate nodes for the results, MAGE

may pick a structurally coherent (likely to be a clique) match, but with only some ex-

actly matched attribute nodes. This means that some of the edges or nodes of the result will

not be directly connected and will introduce some new nodes and edges. Even with the

complexity of approximating 7-clique MAGE is still able to return good approximations,

albeit with many extra nodes and edges, demonstrating MAGE’s main strength is in finding

approximate matches to help the user explore different hypotheses.

For the purposes of demonstrating the semantic result quality, we present visualized

query results from the RT movie data in Figure 4.11. To demonstrate MAGEs generaliz-

ability, our effectiveness evaluation used multiple graphs, including a real Rotten Tomatoes

movie similarity graph, where MAGE finds movies matching interesting criteria (e.g., find-

ing a cult movie that has horror and comedy ingredients). MAGE was able to find the movie
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Figure 4.11: Rotten Tomatoes queries and example results. Each node represents a movie;
each edge between two movies indicates that they are similar. The two edge classes (see
legend) were derived from user-contributed similarity scores. Exactly matched results are
presented in green while partially matched results are presented in purple.

Carrie that fits this query (see Fig 12, bottom row), which is mostly horror, with a few funny

scenes; it indeed generated a cult following. Similarly, we also used MAGE to find movies

that occupy the intersect of the genres of drama, sci-fi and action (as seen in Fig 12, top

row) and it returned two popular films Underworld and Beowolf that fit this description

very well. This experiment with the RT graph suggests that MAGE has the potential to be

used in consumer-facing, main-stream applications such as movie recommendation.

4.6 Conclusion

To the best of our knowledge, MAGE is the first approach that supports exact and approxi-

mate subgraph matching on graphs with both node and edge attributes, for which wildcards
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and multiple attribute values are permissible. Our experiments on large real and synthetic

graphs (e.g., 460M edge Google+ graph) demonstrate that MAGE is both effective and scal-

able. Using multiple node or edge attributes in a query incurs negligible costs, and MAGE

scales linearly with the number of wildcards. To demonstrate MAGE’s generalizability,

our effectiveness evaluation used multiple graphs, including a real Rotten Tomatoes movie

similarity graph, where MAGE finds movies matching interesting criteria (e.g., finding a

cult movie that has horror and comedy ingredients). We believe MAGE can be a helpful

tool for exploring large, real-world graphs.
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CHAPTER 5

VISAGE: INTERACTIVE VISUAL GRAPH QUERYING

Building on our research from the previous section, we constructed a visual, interactive

graph querying system. We present VISAGE, an approach that empowers users to construct

expressive queries, without writing complex code.

5.1 Introduction

From e-commerce to computer security, graphs (or networks) are commonly used for cap-

turing relationships among entities (e.g., who-buys-what on Amazon, who-called-whom

networks, etc.). Finding interesting, suspicious, or malicious patterns in such graphs has

been the core enabling technologies for solving many important problems, such as flag-

ging “near cliques” formed among company insiders who carefully timed their financial

transactions [178], or discovering “near-bipartite cores” formed among fraudsters and their

accomplices in online auction sites [84]. Such pattern-finding process is formally called

graph querying (or subgraph matching) [75, 79].

Many graph databases now support pattern matching and overcome the prohibitive costs

of joining tables in relational databases [182]. Specifying graph patterns, unfortunately, can

be a challenging task. Users often need to overcome steep learning curves to learn querying

languages specific to the graph databases storing the graphs.

For example, many graph databases store graphs in the Resource Description Frame-

work (RDF) format, which capture subject-predicate-object relationships among objects1.

These systems support the SPARQL querying language, which is hard to learn and use

Chapter adapted from work at AVI’16 [Paper Link] [179]
Demo of the work received Best Demo Honorable Mention at SIGMOD’17 [Paper Link] [180]
Poster version of the work at IUI’15 [Paper Link] [181]

1http://www.w3.org/RDF/
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Aliens

The	Terminator

Predator

All	Films:		‘Acon	&	Adventure’
							and	1980’s

VISAGE	Query Example Result

Cypher	Query
MATCH (film1:film)--(film2:film)--(film3:film),
  (film1)--(film3)
WHERE film1.genre = ‘Action & Adventure’ AND
  film2.genre = ‘Action & Adventure’ AND
  film3.genre = ‘Action & Adventure’ AND
  film1.year >= 1980 AND film1.year < 1990 AND
   film2.year >= 1980 AND film2.year < 1990 AND
  film3.year >= 1980 AND film3.year < 1990
RETURN film1, film2, film3

Figure 5.1: Top: a VISAGE query seeking three similar action films from the 1980’s along
with a result, found from the RottenTomatoes movie-similarity graph (an edge connects two
movies if they are similar). Bottom: the equivalent query written in the Cypher querying
language. VISAGE’s interactive graph querying approach significantly simplifies the query
writing process.

[183]. The Cypher language, designed for the recent Neo4j graph database2, is easier to

work with since its syntax more closely resembles SQL [184, 185], but expressing rela-

tionships among nodes can still be challenging and may require writing many lines of code

even for conceptually simple queries [186], as demonstrated in Figure 5.1, which seeks a

“triangle” of three similar action films from the 1980’s [76].

While there has been a lot of work in developing querying algorithms (e.g., [75, 79,

76]), there has been far less research on understanding and tackling the visualization, in-

teraction, and usability challenges in the pattern specification process. Studying the user-

facing aspects of subgraph matching is critical to fostering insights from interactive ex-

ploration and analysis. While early works suggested such potential [77, 82, 86], none

2http://neo4j.com/
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Figure 5.2: VISAGE supports many query refinement approaches like abstract querying
(1-3) and example-driven querying (4-5). A broad query (1) with only node types and
structure, with the first resulting match in (2). The Coen Brothers and the film O Brother,
Where Art Thou? are starred, fixing these nodes. With the nodes starred, only matches with
those nodes are displayed like (3). Bottom-up querying or query by example starts with an
example of a known pattern. The known pattern (4) coveys lots of detailed information but
is too specific to offer any other matches. In (5), Good Will Hunting is abstracted to form a
new query based off the example (for only films from the 90s).

evaluated their ideas with users. Hence, their usability and impact are not known.

We propose VISAGE, the Visual Adaptive Graph Engine3, which provides an adaptive,

visual approach to graph query construction and refinement, to simplify and speed up graph

query construction (Figure 5.3). VISAGE performs exact graph querying on large graphs

and supports a wide variety of different node types and attributes.

Our main contributions are:

• We introduce an interaction technique for graphs called graph-autocomplete that

guides users to construct and refine queries as they add nodes, edges, and condi-

tions (feature constraints). Adding too many nodes, edges, or conditions may result

in over-specification (too few results) or even a null-result (no results found) [60].

Graph-autocomplete stops the user from constructing null-result-queries and guides

the query-specification process.

• We design and develop a system that utilizes recent advances in graph-databases to

support a spectrum of querying styles, from abstract to example-driven approaches,

while most other visual graph querying systems do not [77, 82]. In the abstract

case, users start with a very abstract query and narrow down the possible results

by providing feature and topological constraints. In the example-driven case, often

called query by example (QBE) [58], users can specify an exact pattern and abstract

3Please see video-demo in supplementary material.
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1
Query

2
Results

Figure 5.3: A screenshot of VISAGE showing an example graph query of films and actors
related to George Lucas’ films. VISAGE consists of: (1) a query construction area, where
users construct graph queries by placing nodes and edges; (2) an overview popup window
that summarizes the desired features (constraints or conditions) of a query node (in green),
and the features of a selected node in a match (e.g., the film THX 1138 in blue); a results
pane, which shows a list of the results returned by the query. In this example, a user
has specified a condition that the film must have a critics’ overview of “Well-rated”. The
matches’ layouts (general shape) mirror that of the original query.

from that pattern into a query of their choice. This technique allows users to start

from an example or keep a value fixed in their query. In VISAGE, the user can star a

node to fix its place in the query and across all of the results. We provide examples

of both query-construction approaches in the Scenario Section.

• We demonstrate VISAGE’s ease of use and the ability to construct graph queries

significantly faster than conventional query languages, through a twelve-participant,

within-subject user study.

5.2 Scenario

We provide two scenarios to illustrate how users may use VISAGE. The first scenario

starts from a general question with a known structure and narrows the search through query

refinement. The second scenario begins with a known example from which new similar

results are found through abstraction.
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The Rotten Tomatoes Movie Graph Throughout this chapter, we use a Rotten Toma-

toes4 film-actor-director graph. The graph has 58,763 nodes: 17,072 films, 8,576 directors,

and 33,115 actors. There are over 468,592 undirected edges of three types: (1) film to

film edges, based on Rotten Tomatoes’ crowd-sourced similarity; (2) film to actor edges,

showing who starred in what; (3) film to director, showing who directed what.

Scenario 1: From Abstract to Detailed Imagine our user Lana wants to find co-directors

who have starred the same actor in two films. She can begin specifying her query starting

with very general terms. She right clicks the background and chooses to add a new director

node, she repeats this to add another director, and again to add two films and an actor. She

attaches the director to the films and the films to the actor (see Figure 5.2.1), by clicking

and dragging from one node to the other (one pair at a time). She clicks the search button.

She gets the results in the results list, we show only the first result (in Figure 5.3.2) to save

space. She likes the first result (in Figure 5.2.2) with the Coen Brothers, The Big Lebowski,

O’ Brother Where Art Thou?, and John Goodman. Realizing that she enjoys the work of

the Coen brothers, she stars both director nodes and O’ Brother Where Art Thou?, making

them fixed values in the query. She performs the search again with these values fixed.

The query is now looking for any actor cast by the Coen brothers that was in O’ Brother

Where Art Thou? and any other Coen film. She receives the result, in Figure 5.2.3, showing

George Clooney in Intolerable Cruelty.

Scenario 2: Building up From a Known Example Now consider the example-driven

approach, where a user, Barry, takes a known example and abstracts it into a new query.

Barry knows that Matt Damon and Ben Affleck both starred in Good Will Hunting, so he

draws a node for each person and one for the film, and connects each actor to the film

(see Figure 5.2.4). Specific nodes can be added manually by searching for them in the node

search menu (see Figure 5.4.1). When a specific node is added via search, it’s automatically

4A movie review website. http://www.rottentomatoes.com/
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starred so that its value will remain fixed in the query. Nodes can be unstarred by clicking

the star icon in the upper right corner (see the star by Matt Damon in Figure 5.2.4). Because

Barry starred all the nodes in his query, searching only finds one result (if Barry was wrong

and his initial example does not exist, no results will be shown and he will be alerted via

text in the empty results panel). By specifying the exact value of the nodes, the query has

become too specific and will need to be abstracted if Barry wants more results. Barry then

unstars the specific film Good Will Hunting, to find any movie starring both actors (Figure

5.2.5). Barry can also leverage the visualized features of Good Will Hunting to specify new

constraints based on the results (i.e., only selecting movies made in the 1990’s co-starring

the actor duo). He uses a visualization of the possible constraints discussed in Section

5.4.1 and shown in Figure 5.5. Barry reissues his search and finds Dogma (among others),

a potentially exciting film for him to watch.

62%

3

21

100%

0%

0%

7%

31%+

+

Figure 5.4: VISAGE offers several features to ease the selection of individual node values.
(1) VISAGE supports conventional text search for finding a node to star. (2) Node controls
and the add-node menu; the pin button fixes the node’s position in the visualization; the star
button (available only when results exist) allows users to keep that particular node in future
results; the magnifying glass opens the node-search menu (at 1) that allows users to search
for particular nodes. (3) The distribution of each potential neighbor node type is plotted to
the right of each node-button; neighbors that will lead to over-specification are grayed out.
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5.3 VISAGE Overview

The user interface for VISAGE is comprised of a force directed query-graph visualization

(Figure 5.3), a context menu that provides an overview of features (Figure 5.3.2 in blue),

a feature exploration pane (Figure 5.5), and a results list (Figure 5.3.2). The graph view

shows the current state of the user’s query. Matches are found in the background during

interaction with the feature tree and query construction, but can be fetched manually using

the “Find Matches” button at the top. Results are displayed in a popup list (Figure 5.3.3)

which can be removed by clicking “Clear Results” at the top.

When users select a node, a blue border appears along with the node context menu

(Figure 5.3.2). The context menu shows the current selected feature constraints in green

(if the user wants the selected movie to only have good ratings then they can select this

constraint in the feature tree in Figure 5.3.3). When a result is selected, a summary of

the current node’s features is shown in blue. If a particular node value from the data has

been starred, its value in the query is fixed and can take only that specific value during the

querying. Starred nodes have a golden star in the upper right (Matt Damon in Figure 5.2.4)

and an additional context menu that reminds the user that the film is starred.

Adding new nodes is streamlined via our node tray, which is brought up by clicking

the “+” icon on an existing node or right clicking on the background (see Figure 5.4.2).

This menu displays the types of nodes that, if added, guarantee at least one match in the

underlying network. Each node shows a pin, a star and a magnifying glass when moused

over. The pin spatially pins the node and the star allows users to star the node, keeping it

constant in the query. The magnifying glass opens the node search menu, in Figure 5.4.1,

which allows users to search for particular nodes via text. Users can quickly and easily add

known values and pin them; facilitating QBE-like query construction.

VISAGE Querying Language VISAGE allows the user to form complex graph queries,

where the nodes can be as abstract as a wildcard or as constrained as taking a single value

88



(recall the scenario with the Coen brothers in Figure 5.2). Graphs with a known type, for

example a film, can have any number of additional constraints added to them; limiting

the possible matches in the underlying dataset. The feature-tree allows users to explore

hierarchical and non-hierarchical features (for both categorical and continuous variables).

5.4 Design Rationale

Supporting Expressive Querying: Abstract to Specific Graph querying requires the

user to specify a group of nodes and their relationships; however, the constraints placed on

the nodes can range wildly, from specific to abstract (e.g., a wildcard node of any type). A

key design goal was to allow users to express their queries ranging from abstract to very

specific. Users may start from known examples and abstract based off of the features of

their example.

We are able to leverage the internal capabilities of Neo4j in terms of query conditions

and indexing to support more complex queries. We support true wildcards (which can take

on any node type and value). We use indices to support constant-time lookup for all starred

nodes. Conditions are added by clicking on that value in the feature hierarchy. Users are

free to add as many as they like. Within each feature (whether flat or hierarchical), we

employ the logical or operation for constraints (i.e., year = 1997 or year = 1998). Across

the features, we use a logical and for the constraints (i.e., genre = horror and year = 1988).

5.4.1 Improving Visual Query Refinement: Autocomplete

Graph autocomplete has two primary goals (1) keeping the user from making queries with

no results and (2) helping them understand the features of the matches of their query during

refinement.

Structural Guidance When a user submits an over-specified query (one that has too few

or no matches), they must return to their query and refine it until they reach a suitable level
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of specification. To help avoid this, we adapt the query construction process based on the

query the user is constructing. VISAGE directs the user’s query construction towards results

by providing critical information about possible nodes and their features. We have created

the first graph-querying autocomplete, which works on node types. We want to limit the

types a nodes users can add so that their query always has at least one result. This guides

the user in the direction of queries that are rich in matches and away from over-specification

and null-results [60].

We achieve type- or structure-autocomplete by constraining the possible-neighbor op-

tions in the new node menu. By querying in the background we determine which types of

newly added nodes and edges will result in matches and which won’t. VISAGE displays this

data by desaturating the add node button. This way a user can immediately see which types

of nodes are available to them. In the case of truly massive graphs, background querying

for node-types may be too slow. In this case, we use first-k-sampling to guide the user. We

use the first k-results of the current query to determine the feasibility and distribution of

potential new nodes given the current query. The samples are visualized in the bar graph to

the right of the node-buttons (Figure 5.4.1).

Feature Guidance Graph-autocomplete also works in the feature space. We do this by

visualizing the distributions of different node-attributes, from a sample of the results, of

the current query. This approach provides users with detailed information about how the

features (of their current queries) are distributed. With knowledge of different attributes,

users are able to better understand how the results fill out the feature space. These data

provide a visual cue that indicates how a new condition will change the number of results.

We chose to visually encode the feature frequencies in the edges of the feature-tree with

edge-width and saturation (Figure 5.5.2). By adding constraints with sparser features (thin,

light lines in Figure 5.5.2), users will quickly decrease the number of matches. If users

choose denser attributes they will constrain their search less, keeping more of the results.
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Figure 5.5: To investigate the feature space, VISAGE visualizes node features with a tree
view. Hierarchical node features can be clicked to hide or show levels of the hierarchy (3).
The edges denote the density of the target feature in the current results. The darker edges in
(2) mean more results have that attribute value. When a user adds a condition by clicking
a node it is highlighted in green, as in (3). If the current node is a result or a starred node,
that nodes attributes will be highlighted in blue.

The feature tree also promotes abstraction in hierarchical attributes (Figure 5.5.3), because

it is straightforward to trace from one constraint up to the parent constraint. For example,

instead of looking only for films from 1993, the user can move up the hierarchy seeking

films from the 1990’s. Feature-autocomplete gives users the summary feature information

needed to narrow their search without having to repeatedly go back and forth from query

to results.

5.5 Implementation

VISAGE uses a client-server architecture (Figure 5.6) that separates the front-end interac-

tive visualization (client) from the backend graph matching and storage (server). We have

designed VISAGE to be independent of its backing graph database. VISAGE fully supports

Neo4j [7]. Currently, it also partially supports SPARQL, with full support in the near fu-

ture. VISAGE’s web client (Javascript and D3) and server (Python) can run smoothly on the
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Figure 5.6: VISAGE uses a client-server architecture. The client visualizes the query and
results. The server wraps a graph database, e.g., Neo4j, RDF database; additional databases
can be added via new parser output modules. The metadata extractor creates summariza-
tion statistics for autocomplete. VISAGE’s search functionality for finding specific nodes is
sped up using full-text-search indices.

same commodity computer (e.g., we developed VISAGE on a machine with Intel i5-4670K

3.65GHz CPU and 32GB RAM). Optionally, for larger graphs, the server may be run on a

separate, more powerful machine.

To fetch results of a user’s query, we convert and parse the visual query into a com-

pact format that we pass off to the DB modules which convert the parsed query into the

necessary languages for each graph database. Once results are returned, we calculate sum-

mary statistics with the metadata extractor in Figure 5.6, which are the input for graph-

autocomplete and represent the results of the current query.

Parsing A Graph Query When looking for matches of a query, if the starting node

has very few matches in the graph, the search space is reduced and fewer comparisons are

needed. The effect can be enormous, reducing a multiple minute query down to sub-second

times. Because the node-constraints can vary from completely abstract (like a wildcard) to

a single specific node, we have designed VISAGE to partition the graph queries into pieces.

Our first step is to rank the nodes by the number and severity of their constraints. Starred
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nodes are parsed into subqueries first. VISAGE then ranks the remaining nodes by number

of constraints. The entire parsing can often be completed in a few milliseconds or less.

5.6 User Study

To evaluate VISAGE’s usability, we conducted a laboratory study to assess how well par-

ticipants could use VISAGE to construct queries on the Rotten Tomatoes movie graph dis-

cussed earlier. We chose a movie graph, because the concept of films, directors, etc., would

be familiar to all participants, so that they could focus on VISAGE’s features. We asked par-

ticipants to build queries to find interesting graph patterns derived from prior graph mining

research [92, 76, 93]. We compared the time taken forming queries between VISAGE and

Cypher; we chose Cypher for its resemblance to SQL and ease of use. We chose Partici-

pants were not informed which system, if either, was developed by the examiner. We are

not able to compare with GRAPHITE [77], as it is not publicly available.

Participants

We recruited 12 participants from our institution through advertisements posted to local

mailing lists. Their ages ranged from 21 to 31, with an average age of 25. 7 participants

were female the rest were male. All participants were screened for their familiarity with

SQL. Participants ranged in querying skills; three had prior experience with Cypher. Each

study lasted for about 60 minutes, and the participants were paid $10 for their time.

Experiment Design

Our study uses a within-subjects design with two main conditions for completing tasks:

VISAGE and Cypher. The test consisted query tasks which were divided into two sections

(see the Task section). Every participant completed the first section of tasks in one condi-

tion, and the second set of tasks in the remaining condition. The order of the conditions

was counterbalanced. We generated matched sets of tasks, Set A and B, each with 5 tasks
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to complete. The tasks ranged from easy to hard and were counterbalanced with each con-

dition, to even out unintended differences in difficulty among the tasks. We used two sets

of tasks to ensure that participants did not remember their solutions between sets.

Tasks

We created the tasks based on an informal survey of interesting patterns from common

questions people formed when exploring Rotten Tomatoes data and from prior graph min-

ing research [92, 76, 93]. The tasks in Task Set A (shown in Figure 5.7) were:

1. Find films similar to any film from 1993.

2. Find an actor and a director for any drama film.

3. Find an actor starred in 3 films: romance, comedy, and action.

4. Find 3 similar action films, where one is from the 80’s, one from the 90’s, and the

last from the 00’s.

5. Find co-directors who made at least three films together, starring the same actor,

where one of the films was from the 90’s.

The difficulty of each query increases from task 1 through 5. We ranked the difficulty of

each task based on the amount of Cypher code and number of nodes, edges, and constraints

needed. The italic values shown above were the elements that differed between the two task

sets (the order remained the same across both sets). Our hypothesis was that Cypher and

VISAGE would achieve approximately similar performance for easy queries and VISAGE

would achieve shorter task completion times for harder queries.

Task completion time was our dependent measure. Task completion time could be

affected by: (1) Software – VISAGE or Cypher; (2) Task Set – the Task Set A or B; (3)

Software Order – which software was used first. Using a Latin square design, we created 4

participant groups (since all subjects would do both software systems). We randomly and

evenly assigned the participants to the groups, e.g., one group is (VISAGE + Task Set A)
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1990s
Task 5

MATCH (d1:director)--(f1:film), 
  (d1)--(f2:film), (d1)--(f3:film),
  (f1)--(d2:director)--(f2), 
  (d2)--(f3), 
  (f1)--(a:actor)--(f2), (a)--(f3)
WHERE f1.decade = 1990 AND d1 <> d2
RETURN RETURN d1, d2, f1, f2, f3, a

Acon	&
Adventure

All	Films:

1980’s

1990’s2000’s

Task 4
MATCH (f1:film)--(f2:film)--(f3:film),
  (f1)--(f3)
WHERE f1.decade = 1980 AND
  f2.decade = 1990 AND
  f3.decade = 2000 AND 
  f1.genre = 'Action & Adventure' AND
    f2.genre = 'Action & Adventure' AND 
  f3.genre = 'Action & Adventure'
RETURN f1, f2, f3

Romance Comedy
Adventure
Acon	&

Task 3
MATCH (film1:film)--(actor:actor),
  (actor)--(film2:film), 
  (actor)--(film3:film)
WHERE film1.genre = 'Romance' AND
  film2.genre = 'Comedy' AND
  film3.genre = 'Action & Adventure'
RETURN RETURN actor

MATCH (actor:actor)--(film:film),
  (director:director)--(film) 
WHERE film.genre = 'Drama'
RETURN actor, film, director

Drama

Task 2
1993

Task 1
MATCH (film1:film)--(film2:film)
WHERE film1.year = 1993
RETURN film1, film2

VISAGE Cypher

Figure 5.7: VISAGE user study tasks. VISAGE queries shown on the left with their corre-
sponding multi-line Cypher queries on the right.
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then (Cyper + Task Set B).

Procedure

Before the participants were given the tasks, they were provided with instructions on the

software that they would be using as well as information about the data set they would

be exploring. For the Cypher querying language, we offered a tutorial for starting Cypher

tailored to our dataset. For VISAGE we provided an overview of VISAGE’s interface, how

to construct queries, and how our tool would work. The participants were welcome to ask

clarifying questions during these introductory periods.

Once demoed we moved on the the first block of tasks, where we instructed the partic-

ipants to work quickly and accurately. They had 5 minutes to perform each task and could

only move to the next one if they correctly completed the current task or ran out of time.

After each task, the participant was given the next task’s instruction while the system was

reset. Each task was timed separately. If a participant failed to finish a task within the al-

lotted 5 minutes (300 seconds), the experimenter stopped the participant, marked that task

as a failure, and recorded 300s as the task completion time (to prevent participants from

spending indefinite amounts of time on tasks).

Once participants had completed the first set of tasks, they were provided the next set.

At the end participants completed a questionnaire that asked for subjective impressions

about each software system.

5.6.1 Results

Quantitative Results

The task completion times were analyzed using a mixed-model analysis of variance with

fixed effects for software, software order, task set, and a random effect across participants.

This technique is used to analyze within-subject studies and improves over conventional

ANOVA, because error-terms are also calculated per-subject [187].
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Figure 5.8: Average task completion times and likert scores for VISAGE (green) and Cypher
(yellow). VISAGE is statistically significantly faster across all tasks. The error bars repre-
sent one standard deviation.

We measured the task completion time for the effects over all possible combinations of

software, software order, and task set. The only statistically significant effect was software,

suggesting a successful counterbalancing of software order and the equality of the difficulty

of the two task sets. Figure 5.8-left demonstrates the average time per task for the study.

The software effect was significant across all tasks: task 1 (F1,5 = 27.16, p < 0.0004),

task 2 (F1,5 = 49.76, p < 0.0001), task 3 (F1,5 = 33.23, p < 0.0002), task 4 (F1,5 =

25.88, p < 0.0005), task 5 (F1,5 = 42.84, p < 0.0002). Participants were significantly

faster when constructing queries in VISAGE than in Cypher. Only one participant failed to

complete task 5 in the allotted 5 minutes (using the Cypher software); the rest succeeded in

all tasks. This datum is partially responsible for the high variance in the task 5 (see Figure

5.8-left - Task 5). Using VISAGE, participants were able to construct task 5 slightly faster

than task 4 (see Figure 5.8-left). Adding new nodes in VISAGE is faster than specifying

feature constraints; task 4 has a large number of constraints while task 5 has a large number

of nodes and edges. We do not see this in Cypher task 4 and 5, because adding new edges,

nodes, and constraints all take similar amounts of time. Overall, the average difference in
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task times between VISAGE and Cypher was statistically significant (F1,5 = 37.38, p <

0.0005); this represents an average speedup of about 2.67× when using VISAGE.

Subjective Results

We measured several aspects of both conditions using 7-point Likert scales filled out at the

end of the study. Participants felt that VISAGE was better than Cypher for all the aspects

asked about (see Figure 5.8-right). The participants enjoyed using VISAGE more than a

querying language and additionally found that our system was easier to learn, easier to

use and more likeable overall; although this is a common experimental effect, we find the

results encouraging. Several participants found that the visualization of the query greatly

improved the overall completion of the tasks.

5.6.2 Discussion and Limitations

The results of our user study were positive, both qualitatively and quantitatively. This

suggests that VISAGE’s visual representation of graph queries using graph autocomplete is

faster than typed querying languages. We believe that VISAGE achieves these better times

by: (1) streamlining the process of adding nodes and edges; (2) autocompleting partially-

complete queries, which adaptively guides the user away from null-results; (3) shielding

users from making typos and mistakes during the construction of their queries.

Adding nodes and edges in traditional querying systems often requires creating a vari-

able for them, which must be remembered in order to specify the structure and attributes

related to it. The user may have to type the name a single node repeatedly in order to spec-

ify the actual structure and in the case of large queries may confuse the names of nodes.

VISAGE’s visual representation simplifies this considerably. Typos and mistakes are com-

mon when writing a long and complicated query by hand. By programmatically generating

queries based on users’ constructions, VISAGE avoids the delay incurred by typos.

We observed two general strategies that participants employed when constructing
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queries: (1) entities first, then relationships, and (2) iterative construction. Participants in

the first group would often add all the entities from the task first, then wire up the relation-

ships. Other participants followed a more iterative approach, wherein they would start with

a single entity and build up from it (reminiscent of a breadth-first search). No statistical

significance was found in the time taken for each general strategy.

When users construct queries with null-results, a traditional system requires the user

to wait while the search is performed. During the study two of the users stated that the

autocomplete helped remind them about the underlying structure of the network, saving

time during their tasks. We help guide the user away from this case with our graph-

autocomplete, so that users spend less time debugging queries that do not produce results.

Because we sample results for graph-autocomplete, VISAGE may be able to retrieve a small

sample of the possible results in real time, leading to a potentially skewed samples. This

limit is dictated by the underlying graph database and scales accordingly.

While the results of our evaluation was positive, the need for the participants to build

queries was created by the tasks; however, in real-world scenarios, such needs would be ad

hoc. For example, what kind of exploratory query patterns do people create? We plan to

study such needs, as well as how VISAGE can handle those kinds of tasks, in less controlled

situations.

5.7 Scalability and Query Latency

We performed a series of tests to investigate the speed of our system. We tested VISAGE

in two ways: (1) using basic queries and scaling their size and (2) by using examples that

study participants looked at when given free use of the system.

Scalability Experiment 1: Varied Query Size

For the first analysis, we selected three candidate queries of various sizes (see star/claw,

clique and line from Figure 5.9) and run them 10 times in VISAGE, a random feature
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3-clique: Cliq3 4-clique: Cliq4 6 Node Line: lin6 6 Node Claw/Star: claw6

Figure 5.9: Examples of some the queries used in the query scalability tests. Colors and
node shapes are matched to the style in Figure 5.10 where the run times for various sizes
of query are shown.

condition was added to each node. The average runtimes for each size of query are reported

in Figure 5.10-left. Relying heavily on indices, VISAGE operates fast enough to provide

real-time results.

Because VISAGE is separate from the underlying graph querying database, we tested

the speed with which we can parse a visual graph result into a Cypher Query. In Figure

5.10-right, we show the amount of time to parse versus the number of nodes in the query.

VISAGE parses the query quickly, such that the graph database search time is far larger.

Scalability Experiment 2: Common Patterns with Constraints

The second test used common query patterns with numerous feature constraints, visualized

in Figure 5.11. The runtime performance for each of these queries is shown in Figure 5.12.

The first query, Timeless Barbell, illustrates a query for an actor who was in two similar

movies from the 2000’s and co-starred with an actor in two similar films in the 1970’s.

Figure 5.10: Left: Run times for varied sizes of queries in VISAGE. Right: time taken to
parse visual input into a Cypher query. VISAGE operates quickly, even for complex queries.
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Figure 5.11: Four queries used in scalability experiments, which blend both structure and
feature constraints. The Timeless Barbell (1) , shows a query for an actor in two similar
movies from the 2000’s, who co-starred with an actor in two similar films in the 1970’s.
Rating Disagreement (2) shows a chain of three similar films where the critics disagree
with the audience on what good movies are. 1980’s Action-Triangle (3) shows three sim-
ilar action films from the 1980’s. Variable Director (4) investigates directors whose fil-
mography contains the whole spectrum of critics’ ratings.

Rating Disagreement, in Figure 5.11.2, demonstrates a chain of three similar films. The

first film had better critics’ scores than audiences, in the second film the critics and audience

agreed on a neutral score, and in the third the audience thought the film was better than the

critics. A few more examples are; Space Cowboys, Lifeforce, and Blade Trinity; The

Bunker, Devil, Saw; and Antz, Bee Movie, and Little Chicken.

We wanted an action-packed trio of films so we created the 1980’s Action Triangle

query. This three-clique, shown in Figure 5.11.3, has three similar action movies all from

the 1980’s. A few other matches we found are: Back to The Future, The Goonies, and
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Figure 5.12: Run times for the queries from VISAGE’s case study. These queries represent
examples with both structure and constraints, ranging from 3 nodes up to 7 nodes. The
slowest query is the 1980’s Action-Triangle, because it’s a constrained 3-clique which is
much harder to locate than the other examples. All queries finish in under a third of a
second.

Time Bandits; The Beastmaster, Dragonslayer, and Krull; and Indiana Jones and the Last

Crusade, Raiders of the Lost Ark, and The Jewel of the Nile.

Ever been curious about directors whose work spans the entire spectrum of film ratings?

We created the Variable Director example query (see Figure 5.11.4) to find whose filmog-

raphy spanned the ratings spectrum. A few other variable directors are: Robert Rodriguez,

Wes Craven, Francis Ford Coppola, and unsurprisingly M. Night Shyamalan.

The difference likely arises from each of the triangle’s nodes having two constraints

and all being interconnected, which is much harder to fulfill than the Timeless Barbell’s

constraints. All results were processed fast enough to be used interactively.

5.8 Conclusion & Future Work

In this chapter we presented VISAGE, a system built using recent innovations in graph-

databases to support the visual construction of queries, from abstract structures to highly

conditioned queries. VISAGE relies on an interaction technique for graphs called graph-

autocomplete that guides users to construct and refine queries, preventing null-results.

We hypothesized that visual graph querying with VISAGE would be faster for generat-

ing queries than the Cypher querying language. We demonstrated this with a twelve-
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participant, within-subject user study. The study showed that VISAGE is significantly faster

than conventional querying for participants with or without familiarity to Cypher.

VISAGE offers users a visually supported, code-free solution to graph querying that

helps guide the user towards queries with results. Currently we do not support graph sub-

queries, unions and intersections (of graph results), aggregations, shortest-paths, and edge

attributes. This chapter has revealed additional challenges and potential new questions for

the community. How can inexact or approximate querying be used to aid query construction

and refinement; and how best to visualize the uncertainty inherent in approximate results

[10, 12]? We hope VISAGE will spur continued interest in visual graph querying.
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Thrust III

Visualizing and Exploring Subgraph

Matches
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OVERVIEW

After an analyst has navigated and explored a graph with Thrust I, formed visual graph

queries and refined them in Thrust II, they will be faced with numerous subgraph matches.

While there is significant interest in graph databases and querying techniques, less research

has focused on helping analysts make sense of underlying patterns within a group of sub-

graph results.

Visualizing graph query results is challenging, requiring effective summarization of a

large number of subgraphs, each having potentially shared node-values, rich node features,

and flexible structure across queries. Currently, few graph querying systems offer more

than tables, lists, or basic graph layouts for exploring results. A set of subgraphs from a

graph query will likely be rich with additional information, either from the nodes them-

selves or from the underlying topology in which they were found. We propose several

novel visualization techniques, designed to overcome the challenges of summarization and

comparison across a set of results.

In this Thrust, we introduce VIGOR, a system which utilizes algorithms, interaction

design, and visualization techniques to help summarize and compare large numbers of

subgraph results (Chapter 6). We introduce a new method to produce high-level summaries

of results through feature-aware result-subgraph embedding.
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CHAPTER 6

VIGOR: INTERACTIVE VISUAL EXPLORATION OF GRAPH QUERY

RESULTS

Mining graph patterns, whether suspicious, anomalous, malicious, or just interesting, has

become a critical technology for data analytics. For example, in financial transaction net-

works, analysts may want to flag “near cliques” formed among company insiders who

carefully timed their activities [178]. Or in online auctions, analysts may want to uncover

“near-bipartite cores” formed among fraudsters and their accomplices [84]. While there is

significant research interest and development in graph algorithms, database management

systems and even visual graph query construction techniques [188, 83, 179], much less

work has focused on helping analysts make sense of the graph structure and rich data that

makes up subgraph results. Visualizing graph query results (or matches) poses significant

challenges, because we must effectively summarize: the underlying data from the nodes,

the structure of each subgraph result, a large number of results, and the potential overlap in

node and edges among results.

In this chapter, we visualize the resulting subgraphs from exact graph querying, in

which the structure of nodes and edges matches exactly what the analyst specified in their

query. Exact graph querying is used in many domains, from bioinformatics [86], cyberse-

curity [84], social network analysis [92], to finance [178].

Most graph mining tasks are considered finished when query results have been returned;

however, for analysts, seeing initial query results is only the beginning of their sensemaking

process. Despite the significant interest in graph database management systems (DBMSs)

and querying techniques, little investigation has been done in the space of graph query

Chapter adapted from work under review at VIS’17 [Paper Link]
Poster Version of the Work at IEEE VIS’16 [Paper Link] [189]
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Figure 6.1: A screenshot of VIGOR showing an analyst exploring a DBLP co-authorship
network, looking for researchers who have co-authored papers at the VAST and KDD con-
ferences. (A) The Exemplar View visualizes the query, and (B) the Fusion Graph shows
the induced graph formed by joining all query matches. Picking constant node values (e.g.,
Shixia) in the Exemplar View filters the Fusion Graph. (C) Hovering over a node shows its
details. (D) The Subgraph Embedding embeds each match as a point in lower-dimensional
space and clusters them to allow analysts to see patterns and outliers. (E) The Feature
Explorer summarizes each cluster’s feature distributions.

result visualization and exploration. Contemporary graph querying systems provide only

basic methods for displaying results, often using tables or long lists (see examples in Figure

6.2). Given only the table and list visualizations, it’s a challenge to determine what group-

ings of similar results occur or how a particular node value appears among the results. In

the current paradigm, analysts must first find patterns manually in a table before they can

rewrite their original queries to do any filtering or grouping. This can be tedious and does

not promote the development of an internal representation of the information space [190].

We present a novel visual analytics system, VIGOR, for exploring and making sense of

graph querying results. VIGOR uses multiple coordinated views, leveraging different data

representations and organizations to streamline analysts’ sensemaking process [191, 192].

The important contributions of VIGOR include:

• Exemplar-based interactive exploration. VIGOR simultaneously supports bottom-

up sensemaking [190], where an analyst starts with a specific result and relaxes con-
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straints to find other similar results; and top-down sensemaking , where the analyst

start with only the structure (i.e., without node value constraints), and add constraints

to narrow in on specific results (Figure 6.1A). VIGOR supports analysts when investi-

gating how many values are matched to each query-node and how a particular node

value filters the results.

• Novel result summarization through feature-aware subgraph result embedding

and clustering. VIGOR provides analysts with a top-down, high-level overview of

all their results which enables analysts to handle complex grouping and comparison

tasks to make sense of their data [193, 190]. We introduce an algorithm to group re-

sults by node-feature and structural result similarity (Figure 6.1C) and embed them in

a low dimensional representation. By grouping similar results into clusters and mak-

ing cluster comparison easy, analysts can quickly detect and understand underlying

patterns across their results.

• An integrated system fusing multiple coordinated views. VIGOR provides multi-

ple brushable linked views to flexibly explore and make sense of subgraph results, by

integrating the Exemplar View, Subgraph Embedding View, and the Fusion Graph.

The Fusion Graph (Figure 6.1B) shows the subgraph from the underlying network

created from combining all the results, in which very common or uncommon nodes

will have high and low degree respectively. The coordinated views make it easier to

see how nodes appear together across the many subgraph results.

• Real world application to discover cybersecurity blindspots; advancing the state

of the art Through a collaboration with cybersecurity researchers at Symantec, a

leading security company, we present the investigative analysis performed in and in-

sights gleaned from using VIGOR to discovering and understanding blindspots in a

cybersecurity dataset with over 11,000 real incidents. Through a usability evalua-

tion using real co-authorship network data obtained from DBLP 1, we demonstrate
1DBLP Website: http://dblp.uni-trier.de/
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VIGOR’s ease of use over Neo4J, a leading graph DBMS, and its ability to help users

understand their results at higher speed and with fewer errors.

Figure 6.2: (A) Neo4j, a commercial system, displays subgraph matches in a long table.
One match with three nodes is shown here, each gray box describes one nodes’ features. (B)
VISAGE [179] displays subgraph matches in a list, without revealing connections among
results. Even for modest sized queries, these conventional approaches require significant
scrolling, and cannot easily reveal broader patterns and relationships among matches.

6.1 Introducing VIGOR

To illustrate how VIGOR works in practice, we will briefly cover an overview of the sys-

tem’s components (in Section 6.1.1) and an illustrative scenario where we explore co-

authorship in a DBLP network.

DBLP Dataset. In this chapter we utilize a real co-authorship network drawn from a sub-

set of DBLP’s computer science bibliography data. The undirected, unweighted network

Figure 6.3: Exemplar View displaying a query seeking researchers who have coauthored
papers at two different conferences. (A) The analyst starts with only the structure of the
graph query, then incrementally adds node value constraints to narrow in on specific results,
(B) first by choosing KDD, which (C) narrows down the remaining choices for authors.
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contains 59,655 authors, 48,677 papers, 7,236 sessions, 417 proceedings, 21 conferences

and 1,634,742 relations from the data mining and information visualization communities.

We will use this network in both the illustrative scenario (Section 6.1.2) and in our user

study (Section 6.4.1).

6.1.1 VIGOR Interface Overview

The VIGOR user interface is composed of four main areas (Figure 6.1). The Exemplar

View at the top (Figure 6.1A) visualizes the user’s textual graph query (entered into the text

form at the top of Figure 6.1) and supports quick filtering by value. The Fusion Graph

(Figure 6.1B) displays an induced graph of all the result subgraphs from the query, quickly

demonstrating which nodes appear often and with which other nodes. The Subgraph Em-

bedding view (Figure 6.1C) summarizes all the results by reducing each result into a square,

gray glyph and clustering them (colored, concave clusters) based on feature similarity. An-

alysts are free to create, name, and compare their own clusters. Clusters are compared in

the Feature Explorer view (Figure 6.1E), which provides summary distributions of each

node type included in the results. The goal of the VIGOR interface is to enable analysts

to detect underlying patterns in their result set as well as explore individual values with as

little tedium as possible. The synergy of these techniques across our three views enables

analysts to explore their query results with ease.

6.1.2 Illustrative Usage Scenario

We demonstrate how VIGOR works with an illustrative example exploring a cross-

conference co-authorship query. Imagine an analyst, Alexis, is interested in finding authors

and papers that bridge the information visualization and data mining communities. This

scenario demonstrates some of the interactions and major features in VIGOR.

Because Alexis wants to learn about papers, conferences, and authors, she begins with

a query looking for an author who has published two papers with a co-author, where the pa-
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Figure 6.4: The Subgraph Embedding provides an overview of the results through the
feature-aware subgraph embedding, where results are displayed as points in two dimen-
sions based on node feature similarity. We see the clustered results of a query seeking two
co-authors of two papers at VAST and another conference (shown in Figure 6.3). Nearby
clusters (A) and (B) both contain VAST and KDD papers, the features of which are com-
pared in Figure 6.6. Cluster labels are customized by the analyst during exploration.

pers were published to VAST and another conference. In VIGOR, Alexis starts by entering a

query written in the Cypher query language from the popular Neo4j (http://neo4j.com)

DBMS. Her query appears graphically in our Exemplar View, where she verifies that she

correctly specified the right structure (Figure 6.3A).

Alexis has just begun her investigation and she wants to see an overview of her re-

sults. She gets over 2,500 results, each with six nodes (from the previously mentioned

query), wherein some nodes could be shared among multiple results. She wants a high

level overview of her results that allows her to see similarities and groupings.

VIGOR’s Subgraph Embedding view provides an overview of all her results in the form

of a plot with clusters. Similar subgraph results (gray squares in Figure 6.4) are placed spa-

tially close together by the feature-aware subgraph result embedding and clustering (Sec-

tion 6.3). To help her differentiate among groups, VIGOR uses a density-based clustering

technique [194] to detect clusters and automatically creates colored concave hulls for each.

Alexis has the option to adjust the embedding and clustering parameters. She may also
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Figure 6.5: (A) Starting from a group of results, (B) an analyst lassos the desired results.
(C) A concave hull is established forming a cluster with the points. Cluster can be used to:
filter the Fusion Graph and compare features and node values in the Feature Explorer.

create and name her own clusters by lassoing groups of points (Figure 6.5A-C).

She shift-right-clicks two neighboring clusters (Figure 6.4A and 6.4B) to compare them

in the Feature Explorer (Figure 6.6). The Feature Explorer shows common node values and

feature distributions for each node type included in the clusters, similar to [149, 195]. The

color of the plots in the Feature Explorer correspond to the colors of the selected clusters.

She can use the value-plots (bar charts in Figure 6.6) to see what nodes appear most com-

monly in a cluster. Alexis labels the clusters based on their most common conferences (e.g.,

“VAST & UIST” in Figure 6.4). She notices that both clusters are composed of authors and

their publications at VAST and KDD, a top tier data mining conference. From the author

feature distributions in the Feature Explorer (Figure 6.6-left) she discovers that the gray

cluster (cluster B) is likely to contain more senior researchers, because they have higher

paper counts, more distinct conferences and greater numbers of co-authors. Her curiosity

grows as she wonders what types of papers bridge these two research communities.

After her initial query, Alexis is faced with numerous results, but she wants to find spe-

cific authors and papers. What should she do next? She can quickly filter down results by

values with which she’s comfortable by clicking one of the yellow conference nodes in the

Exemplar View window, which displays a searchable dropdown menu with the matching

conferences (Figure 6.3B). She selects KDD. When she clicks on an author node in Figure

6.3A, the dropdown now contains only those authors who have published together at VAST

and KDD. From the list she recognizes Shixia Liu, a VAST’17 Paper Chair, and selects her
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Figure 6.6: The Feature Explorer shows common node values and feature distributions for
each node type included in two clusters (A and B in Figure 6.4). The features for each node
type in the Fusion Graph view are summarized as distribution charts. The bar chats show
the top-k most common values, including those shared between the selected clusters.

(Figure 6.3C).

Alexis’ selection in the Exemplar View filters the Fusion Graph (Figure 6.7), a force-

directed graph induced by joining all subgraph matches together (e.g., if a conference is

shared among several results, it will appear only once). The Fusion Graph now shows only

Shixia Liu’s co-authors on at least one paper with her from VAST and one from KDD (e.g.,

Figure 6.7: Shixia Liu’s papers and co-authors who have published papers together at VAST
and KDD. The Fusion Graph view shows an induced subgraph of all the combined results
from the original query, which can be filtered from either the Subgraph Embedding or the
Exemplar View.
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Michelle, Furu, Li, Xiting, and Baining in Figure 6.7). Alexis discovers that each paper is

related to understanding textual data and is potentially valuable to her future research. She

is inspired by the combination of the speed, scale, and automation of data mining being

combined with the visual, interaction design, and sensemaking of visualization.

6.2 Core Design Rationale

Below, we present the core facets of VIGOR’s design and discuss how they support sense-

making for query results.

6.2.1 Leveraging Examples: Bottom-Up Exploration

Starting with low level details is often referred to as a bottom-up sensemaking [190, 10].

Starting from a known example can greatly improve the development and understanding

of a query [58]. We designed the Exemplar View (Figure 6.3) to provide the following:

(1) an arrangeable visualization of the typed input query for fast error-checking; (2) easily

accessible information on how many values a particular node from the query finds in the

results (e.g., does an author node in a query match to only 3 authors or 3,000?); (3) the

ability to start from a familiar result and relax constraints to find other results; and (4) a fast

mechanism to add node value constraints to filter down the number of results.

At every step of relaxation in (2) or filtering in (3), the analyst sees real-time updates

(in dropdowns in the Exemplar View and as filtering in the Fusion Graph) as the number of

possible results changes. Conversely, if the analyst adds new node value constraints

6.2.2 A View From Above: Top-Down Exploration

High level overviews, like the Subgraph Embedding (see Figure 6.4), have proven useful in

visualization models for sensemaking in other datasets [193, 10]. An overview of subgraph

results is challenging, because: the number of subgraphs is large, the subgraphs may share

nodes and edges, and each subgraph is made of multiple nodes that each have separate (and
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often very different) features.

To overcome these challenges we represent each result as a square glyph (to differenti-

ate from the circles used for nodes) rather than nodes and edges, to simplify plotting. The

Subgraph Embedding has the strengths of a scatterplot (including concave hulls around

clusters) of all the results based on their nodes’ features. The Subgraph Embedding allows

zooming, panning, jitter, and fine-grain control over embedding and clustering. We group

similar results with concave hulls, because there are many cases in which convex hulls

overlap unnecessarily. New clusters can be freely created using a freeform lasso tool. Sim-

ilar results are plotted close to each other and often form clusters as in [109]. The details

of our graph embedding algorithm are discussed further in Section 6.3.

6.2.3 Feature-centric Sensemaking for Result Clusters

Typically, when an analyst poses a query they have constrained only some of the potential

features of their results; the remaining features are free to vary and often form patterns.

Feature distributions [195] and node-feature distributions [149] have proven a valuable

way to compare results. To compare these features, we created the Feature Explorer (Figure

6.6), which provides node feature and value distributions by node type for a cluster. The

lasso can be used to create new clusters, even from within other clusters or combining them.

Multiple clusters can be compared at once by selecting them in the Subgraph Embedding.

6.2.4 Coordination in Multiple Views

VIGOR utilizes linked highlighting and filtering so that changes made in one view are re-

flected in the others. The Exemplar View highlights the Subgraph Embedding and filters or

highlights the Fusion Graph based on node-value constraints. Clicking squares or clusters

in the Subgraph Embedding: allows the selection an exemplar result in Exemplar View for

bottom-up exploration, filtering or highlighting the Fusion Graph, and allows for the selec-

tion of different clusters in the Feature Explorer. Hover over a node in the Fusion Graph:
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highlights the node’s neighbors and the results containing that node in the Subgraph Em-

bedding. An analyst can choose to filter or highlight the Fusion Graph with the Exemplar

View and Subgraph Embedding, with filtering the default.

6.3 Methodology & Architecture

In the following section we outline our novel feature-aware, subgraph-result embedding

for reducing subgraph-results to 2D points. While dimensionality reduction is common

in other areas of visualization, visualizing graph query results has seen significantly less

advancement. Dimensionally reducing subgraphs requires: (1) a graph embedding to turn

each subgraph into a high-dimensional vector and (2) distance-preserving reduction tech-

niques to reduce the dimensionality of each subgraph, without losing underlying similar-

ities. We combine both structural features from the network topology as well as features

from the nodes. Often some nodes may have missing values or different types making

6.3.1 Embedding Subgraphs

For our embedding, we utilize both network topology features as well as the rich domain

features from our nodes. The embedding pipeline takes four stages from result set to low-

dimensional representation. The steps of the pipeline are (see Figure 6.8):

• Extract Features - Calculate the topological- and node-features.

• Vectorize - Merge the common features into per-result vectors.

• Aggregate & Normalize into Signature - Reduce the large input vectors into uniform

signatures.

• Reduce & Cluster - Reduce the signatures using dimensionality reduction to fit them

into 2D.

Our Subgraph Embedding reduces query results (each is a subgraph) into points via a

subgraph embedding for visual results similar to [109]; however, our approach differs in
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Figure 6.8: Given a set of k results (A), we first extract topological features (B) from
the neighborhood around each result in the underlying graph, which are combined with
features from each node in the result. Next the values are rearranged by feature (C). These
feature sub-vectors are run through the moment of distribution functions (mean, variance,
skewness, and kurtosis), which collapse the original sub-vectors of different lengths into
new uniform-length vectors (D), each is unraveled into a signature for the result, which are
unit-normalized and dimensionally reduced (E). The low-dimensional space is clustered
before the results are presented (E).

several key areas outlined below.

Extract Features We use both the node-features fs and a small set of topologically ex-

tracted features ft as inputs to our embedding (Figure 6.8A and 6.8B). There are many

different ways to extract features from a graph. We started with the structural features from

[109] and NetSimile, [106], for structural features. Based on our experiments using struc-

tural features alone is insufficient in our case. Often our subgraph results have significantly

fewer nodes than both previous approaches and have exactly the same network structure.

Because of the identical structure of our subgraphs the embedding from [106] will project

all the results into a single point.

We integrate some of the novel features from NetSimile, but leave several out as they
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did not perform well on our induced subgraphs. Unlike both approaches we make use of

the node features from the results themselves in our embedding. This means that different

nodes with similar features will be closer to each other, increasing the chances of seman-

tically meaningful and explainable clusters. In the case of real world data nodes may be

missing values, which makes a purely feature-driven comparison between results imbal-

anced (as some results may have features that others do not). We address this problem by

converting the raw features to fixed-length signatures, which we cover in the Aggregate &

Normalize into Signatures subsection. Which node features to use are chosen by the analyst

in a network schema configuration done once during VIGOR setup.

Assume we have received k results, where each result is composed of n nodes. For just

the structural features we look at each result in the context of the original network and ex-

tract subgraph neighborhood and egonet information from the underlying graph. An egonet

of a node, i, is the neighbors of i, the edges to these neighbors and all the edges among

neighbors. This performs significantly better for small queries by structurally differentiat-

ing them based on their place in the underlying data. The most effective structural features

are:

• Node degree - or the number of neighbors

di = |N(i)|

where N(i) is the set of neighboring nodes of node i.

• Egonet edges - the sum of inter-neighbor edges of node i

E(ego(i)) =
∑

j∈N(i)

 ∑
ejk∈E(j)

δik

 ,

δ(ik) =


1 if k ∈ N(i)

0 if k /∈ N(i)

,
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where ej,k ∈ E(j) are the edges at node j to node k.

• Egonet neighboring nodes - the total number of neighbors across all the neighbors

|N(ego(i))| =

∣∣∣∣∣∣
⋃

j∈N(i)

N(j)

∣∣∣∣∣∣ ,
• Clustering coefficient - the fraction of closed triples over total triples from the neigh-

bors of node i
ci =

2|ejk ∈ E(i) : j, k ∈ N(i)|
|N(i)| · (|N(i)| − 1)

,

Vectorize Each node of a result now has the four structural features from above and

any non-text features from the nodes themselves (e.g., for an author node in our DBLP

graph, we have additional features like the number of coauthors, number of conferences,

etc.). This creates an issue, both because a result has k different feature vectors and also

the different types of nodes in the result will have different lengths of features (see Figure

6.8C). The first problem we solve by vectorizing the features per result. We merge common

features across the nodes into a single vector per feature for each result (Figure 6.8B).

Aggregate & Normalize To solve the issue of uneven lengths of the per-result feature

vectors we convert them into a signature (see Figure 6.8D). We aggregate each vector down

to a fixed number of values such that the signatures are all the same length. We utilize the

moments of distributions to reduce the feature vectors into a fixed length signature. We

use the first 4 moments: mean, variance, skewness, and kurtosis. For robustness we cannot

use the mean and variance alone, because both structural features and node-features may

not be normally distributed. The skew moment measures the lopsidedness of a distribution

while the kurtosis gives a measure of how heavy the tail of the distribution is. We perform

these for each feature vector per result and wrap them into a single array, yielding a new

signature of length 4 · (|fs| + |ft|), where fs and ft are the sets of features from the nodes

and the structure respectively.
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Reduce & Cluster We then perform dimensionality reduction to reduce the dimensions

to two (see Figure 6.8E). There are many dimensionality reduction techniques both linear

and nonlinear. We default to Principle Component Analysis (PCA) [110], but allow the

analyst to choose among kernel-PCA [196], multidimensional scaling (MDS) [114], and

t-Distributed Stochastic Neighbor Embedding (t-SNE) [116]. We chose to offer PCA first

due to its fast performance and simple linear nature.

Both MDS and t-SNE allow arbitrary distance functions rather than the Euclidean dis-

tance. For both MDS and t-SNE we compute the Canberra distance (or weighted L1 Man-

hattan distance) [197] rather than the Euclidean distance. We chose Canberra because it

is sensitive to small changes near zero, which helps preserves small distances in the final

reduction. It has also performed well on real datasets [123].

We perform clustering on the dimensionally reduced points (see Figure 6.8E). There

are many density-based clustering algorithms like DBSCAN [198] or OPTICS [194]. We

use OPTICS to perform our density-based clustering, because it performs better on clusters

with different densities [194]. Because the choice of ε greatly affects the resulting clusters,

we allow the user to adjust the value via a slider. The cluster information in encoded as

colors in the Subgraph Embedding.

6.3.2 Architecture

VIGOR uses a client-server architecture using D3 and jQuery for the front-end and python

for the back-end. The network data are stored using the popular Neo4j graph database. We

chose Neo4j for its cross-platform support, robust querying language, and its scalability to

large graph datasets. One of our goals is to offer VIGOR as a flexible sensemaking tool that

works on a wide variety of network datasets. Our design separates the underlying network

schema from the system, so that VIGOR can easily by used on different network data.
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Performance VIGOR is a practical working prototype analytical system; the queries

shown in this paper are all returned within 1-2 seconds. We achieve this performance

through Neo4j indices and asynchronous computation of dimensionality reductions. Be-

cause the different dimensionality reductions techniques have significantly different run

times, we return PCA (the fastest) first to maintain the interactivity of the system and sub-

sequently return the others in the background.

6.4 Evaluation

We performed a two-part user evaluation of VIGOR (Section 6.4.1). In the first part, we

compare VIGOR against Neo4j, a leading graph DMBS. Neo4j is an industry leader among

the few free systems that visualize graph query results. In the second part, we performed a

think-aloud investigation of the Subgraph Embedding, because there is no analog in Neo4j

against which to compare.

To study how VIGOR can help with solving real-world problems, we collaborated

with three security researchers at Symantec2, the leading security company, to identify

blindspots in the understanding of critical security incidents. In Section 6.4.2, we present

the investigative analysis performed and insights gleaned from using VIGOR on an cyber-

security incident-network.

The details of the analyzed graphs are outlined in Table 6.1.

Network Type Node Edges Node Types

DBLP 115, 989 1, 543, 792 5
Cybersecurity 17, 651 384, 172 3

Table 6.1: Graph datasets used for evaluation: DBLP dataset for user study; cybersecurity
dataset for real-world application to discover security blindspots.

2We invited our Symantec collaborators to join as coauthors of this chapter.
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6.4.1 User Study

To evaluate VIGOR, we conducted a user study to assess how well our new visualization

techniques compare to the current state-of-the-art Neo4j interface. Previous research has

focused on how analysts can visually construct queries [83, 179, 58]; however, our research

focuses on how well analysts can make sense of and solve tasks given a set of query results.

We chose a DBLP co-authorship graph, because the concepts are relatively simple and

accessible to non-expert participants.

Our protocol has two parts: (I) comparative tasks, (II) a think-aloud exploration study.

In Part I, we measured the number of errors and time taken solving a set of tasks for

both VIGOR and Neo4j. In Part II, we asked participants to perform some open-ended

exploration objectives after giving them a tutorial on the think-aloud protocol.

Participant Demographics

We recruited a total of 12 participants via our institutions local mailing lists. They ranged

in age from 21 to 31, with 25 as the average. Of the participants, 7 were female, while the

rest were male. Each study lasted on average 70 minutes, for which the participants were

each paid $10 for their time.

Protocol

We utilized a within-subjects experimental design with two systems (VIGOR and Neo4j)

and two task sets. Each system was tested with one of two sets of tasks (see the subsequent

Task section). Participants completed the first set of tasks with the first system and the

remaining task set with the second system. System order was counterbalanced to ensure

experimental fairness. Task sets were also counterbalanced for fairness.

Participants were given an introduction to the dataset and tutorials of each system before

being given the tasks. We encouraged participants to ask questions at any time during the

study, but especially during the introductory period. For Neo4j we created an interactive

122



Neo4j tutorial tailored to our dataset and instructed participants on Neo4j’s interface and

its features. For VIGOR we provided an interactive tutorial of the interface, how to filter

results, and how to interact with our views.

Once a participant had completed tutorial for their current system, we provided them

with context in the form of a scenario based around each query; participants were not asked

to write queries. We then instructed them to work quickly and accurately on each task. Each

task was allotted five minutes and was timed separately. Participants could only move onto

the next task once they had completed the current one, or if time ran out. Incorrect answers

were recorded for each task, including if they ran out of time before answering.

Once a participant had completed all the tasks with a system, they would repeat the

same process with the next system (including the system demonstration). Participants were

not informed which system, if either, was developed by the examiner. After a participant

had completed both comparative tasks, we asked them to complete Part II, the think-aloud

exploration study. At the end of the study, participants completed a questionnaire that asked

for subjective impressions about each software system.

Part I: Comparative Study

Tasks Our interest was in testing the speed of solving simple tasks with a collection of

results rather than the speed of writing queries. For each task the participant was provided

a short scenario and a pre-written query. The patterns for the tasks were based on common

patterns and motifs from prior graph mining research [92, 76, 93]. The tasks from Task Set

A (shown in Figure 6.9) are:

1. Find the count of ICDM conference papers by Daniel Keim in our dataset.

2. From the last two years of KDD publications, find and list the authors who are on

more than one paper with “entity” in the name.

3. Find the number of distinct groups of researchers that Tobias Shreck is in from IN-

FOVIS publications.
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Author Paper Conference

Daniel Keim

Author 1

Paper
Author 2KDD

Conference
>= 2015

Author 1 Paper 1 INFOVIS

Author 2

Conference

Paper 2
KDD

Conference

Author 1

Paper
Author 2INFOVIS

Conference

Task 1

Task 2

Task 3

Task 4

Find the number of papers
Daniel Keim has published at
ICDM.

Find all authors from 2015 or
later at KDD, that have
published at least two papers
with 'entity' in the name.

List the distinct number of
INFOVIS publication groups that
Tobias Shreck is in.

For co-authors with a paper at
INFOVIS and another at KDD,
find the author with the most
distinct papers.

Query Objective

Figure 6.9: VIGOR user study comparative tasks. These tasks were provided to create the
result sets used in Part I of our user study. Both task sets utilized the same query topologies,
but different values, carefully selected to have the same number of results.

4. Among coauthors of at least two papers together at INFOVIS and KDD, who has the

most publications.

The tasks approximately increased in difficulty from 1 through 5. We ranked the dif-

ficulty of each task based on the number of nodes, edges, complexity of the query, and

size of the results. Our initial intuition was that Neo4j and VIGOR would achieve similar

performance for the easier early tasks, while VIGOR would be faster for harder queries.

Error rate and task completion time were the dependent measures. Both measures could

be affected by: (1) Software (VIGOR or Neo4j); (2) Task Set (Set A or Set B); (3) Software

Order (VIGOR or Neo4j going first). Because of the within-subjects design we utilized

a Latin Square design randomizing each participant into one of four groups where we
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Figure 6.10: Average task completion times and error rates for VIGOR (yellow) and Neo4j
(gray). VIGOR is statistically significantly faster across all tasks. Error bars represent 95%
confidence interval.

counterbalanced the possible confounding factors (e.g., one group is (VIGOR + Task Set A)

then (Neo4j + Task Set B)).

Quantitative Results We analyzed task completion times usinng mixed-model analysis

of variance (ANOVA) with fixed effects for software, software order, task set, and a random

effect across participants. Mixed-model ANOVA improves over conventional ANOVA as

errors are calculated per-subject.

Our task completion times were measured over all combinations of software order and

task set. The experiment was successful as the only statistically significant effect was from

software system. Figure 6.10-left demonstrates the average time per task in our study. The

software effect was significant for each task: task 1 (F1,11 = 29.79, p < 0.0003), task 2

(F1,11 = 41.02, p < 0.0001), task 3 (F1,11 = 33.68, p < 0.0002), task 4 (F1,11 = 23.89, p <

0.0006). Only task 3 (F1,11 = 12.27, p < 0.0057), and task 4 (F1,11 = 19.6, p < 0.0013),

had statistically significant error rates. This is expected as the error rates for the first tasks

were very low. The second task in Task Set A came close to significance with (p < .048),

likely arising from slightly higher number of edges in the induced subgraph than in Task
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Figure 6.11: Participants were asked to qualitatively compare each system at the end of
each trial. Overall, they felt that VIGOR was better than Neo4j in all of the 7 aspects asked.

Set B. Participants were both significantly faster and less prone to error with VIGOR versus

Neo4j.

Subjective Results At the end of the study we asked participants to rate various aspects

comparing both systems using Likert scales. Participants felt that VIGOR was better than

Neo4j for all 7 aspects asked (Figure 6.11). One participants stated, “I enjoyed the cluster-

ing features of VIGOR, allowing the user to quickly compare variables (Year, etc.) about

any possible combinations of groups.”. The participants enjoyed using VIGOR more than

a Neo4j and reported that our system was: easier to learn, easier to use, and more likeable

overall; although this is a common experimental effect, we find the results encouraging.

Part II: Think-aloud Exploration Study

After the comparative tasks were completed, all participants were asked to perform a think-

aloud exploration study. We chose to separate this part of the study from Neo4j as it tests

new features that are not present in Neo4j’s interface. This part of the study was not timed.

Our goals for the think-aloud study were:

• Feature interactions: were our features were working well together, and whether
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VIGOR met their basic exploration needs.

• Identify usability issues: were features usable and if they coordinated in beneficial

ways during their exploration.

• Feature application: what techniques participants would use with VIGOR and

whether its functionality would help streamline their analytics workflow.

High-level Objectives We provided participants with a pair of scenarios and high-level

objectives to complete. We asked participants to imagine themselves as researchers inter-

ested in:

1. the features from all papers by Jiawei Han or Christos Faloutsos at PKDD and SIG-

MOD; and

2. understanding the outlier results (results distant from a cluster) for co-authors of

papers at VAST and KDD or INFOVIS and KDD.

We provided the queries for both tasks. Participants were free to use any features of VIGOR

and ask questions during the objectives. We chose the above objectives, because they are

common in graph analysis [199, 200].

Key Observations During the first objective, 6 participants began their exploration by

searching for PKDD and SIGMOD using the Exemplar View to find the conferences. An-

other 4 of the participants went directly to using the Fusion Graph to highlight results in

the Subgraph Embedding by hovering over specific conferences. The remaining 2 partici-

pants used the Feature Explorer’s conference type to investigate which clusters contained

PKDD and SIGMOD conferences. For 4 of the 12 subjects they had considerable difficulty

with their first few lassoing attempts, often completely missing the desired nodes. Only 2

participants failed to adequately complete the objective.

In the second objective, 10 participants started by creating new clusters by lassoing

groups of outliers to compare them against the existing clusters. The remaining 2 used
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the Fusion Graph to highlight results in the Subgraph Embedding for particular nodes.

Of 12 participants 3 reported that they had not found any satisfactory explanations for

outliers, while the remaining 9 either found specific papers or features not present in the

cluster. One participant correctly commented that several of the outliers arise from single-

author papers, because multi-author papers have a higher chance of being repeated across

the results (and therefore have a higher chance of being similar to other results). Overall

participants performed very well using the coordinated views in VIGOR.

Discussion and Limitations

The qualitative and quantitative results of our user study were positive. The results suggest

that VIGOR provides useful and effective visual techniques for analyzing and making sense

of graph query results. VIGOR achieves this improved performance through: (1) stream-

lining the filtering process to allow users to quickly narrow down by a particular author

(Task 3), or by a particular term in papers (Task 2); (2) the flexibility and customization of

the Fusion Graph graph layout (all Tasks); and (3) the Subgraph Embedding, which makes

grouping and comparing the results easy (Part II).

While Neo4j is an industry leader, we found two specific design-choices (based on par-

ticipant feedback) that limited performance with Neo4j: (1) the default edge-autocomplete,

add any underlying edge from the network (regardless of its inclusion in the query); and

(2) the instability of the force directed layout positions during node dragging.

We did not evaluate query creation and modification. Our study did not evaluate query

creation and refinement; participants were given the query that corresponds to a scenario

investigating co-authorship, which may not be the most natural query that they would like

to create. If we allowed participants to create ad hoc task queries, the immense variety of

possible queries would make the evaluation extremely difficult. Moreover, query refine-

ment, a challenge that would add additional confounding factors to the study, would also

require participants to have more prior knowledge [179]. Even the queries provided were
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challenging to many participants, as demonstrated by the high error rates in Task 4.

We were pleasantly surprised to see that participants were able to use and compare

features using the cluster-based distributions in the Feature Explorer (Figure 6.6) and that

they could use when comparing more than two clusters.

While our evaluation was very positive, the real-world scenarios and initial queries of

analysts would be ad hoc. We plan to study this case and better understand how VIGOR can

handle tasks in less planned situations. For example, how would analysts utilize the Sub-

graph Embedding for significantly different domains, transportation networks, intelligence,

bioinformatics?

6.4.2 Real World Application: Discovering Cybersecurity Blindspots

We collaborated with three security researchers from Symantec to identify blindspots in

their company company’s understanding of critical security incidents. They see strong po-

tential in VIGOR to help them educate their company customers about these weak points

in their response to dangerous security situations. We used VIGOR in the following ways

to identify company blindspots and bring them into focus: (1) we contrasted companies

that tend to ignore critical security incidents with peers that face the same types of inci-

dents but exhibit exemplary incident response (see Figure 6.12A), and (2) we highlighted

instances in which companies do not respond consistently to critical security incidents such

as vulnerability scans and malware outbreaks (see Figure 6.12B).

Symantec Cybersecurity Network To pose these types of queries, we created a cyberse-

curity network composed of Company nodes (orange), Incident nodes (red) and Signature

nodes (blue). In total, this network of security data contains 17,651 nodes and 384,182

edges. All of these entities correspond to real world events and represent the detection of

and actions taken against various security threats. Companies are linked to the security

incidents that were detected on their systems, and each incident is in turn linked to the
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Figure 6.12: Example queries from our exploration of cybersecurity blindspots. Query
A reveals companies ignoring critical security incidents that their peers resolve, whereas
Query B extracts companies responding inconsistently to critical security incidents.

signatures that were responsible for triggering it. Signatures that are responsible for the

creation of security incidents are designated as “Active Signatures” that typically identify

glaring security issues, such as malicious network traffic and computer viruses. Security

products also define “Passive Signatures”, whose primary purpose is to provide contextual

information about such things as login behavior and other system or network events. The

active signatures trigger security incidents of various levels of severity, of which critical

incidents are the most important, and are the basis of the incidents used in case study, as

they should be met with immediate investigation and resolution, but frequently are not.

Query 1 - Comparing Company Incident Behavior Our first query (see Figure 6.12A)

identifies pairs of companies faced with critical security incidents that consist of at least

one active and one passive signature, such that one company resolved its incident while

the other company ignored it. By posing this VIGOR query and examining its results (ref.

Figure 6.13), we identify a company’s (Company 7) blindspots in a way that simultaneously

provides interactive graphical evidence that another company (Company 16) is faced with

similar security incidents and takes them seriously. The results of this query can also be

used as an educational tool and shared directly with companies as evidence of their most

glaring blindspots. Doing so helps companies re-evaluate and react differently to future

instances of incidents that they would have otherwise continued to ignore.
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Figure 6.13: Results of our first blindspot detection query (see Figure 6.12A). VIGOR

identifies Company 7’s blindspots with evidence that Company 16 is faced with similar
security incidents and takes them seriously.

Query 2 - Inconsistent Company Threat-Reactions Of similarly concern are situations

in which a company reacts inconsistently to the same type of security incident. By posing

the query of Figure 6.12B, we identify incidents that companies respond to inconsistently.

This query provides a company with the ability to identify blindspots at the finer-grained

level of its individual incident responders, some of which may understand the perils of a

particular type of security incident much better than others do. Example results are shown

in Figures 6.14A and 6.14B. In both cases, VIGOR identifies malware outbreaks that were

not fully eradicated. Further outbreaks of the malware are likely in both cases. The malware

of Figure 6.14A could be spreading by means of the unmitigated unauthorized internal

vulnerability scans that happened in a similar timeframe. Similarly, internal machines still
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Figure 6.14: Results of our second blindspot detection query (see Figure 6.12B). VIGOR

identifies companies that respond inconsistently to critical malware-related security inci-
dents, while majority of the incidents are resolved (circled in green), some received no
action (circled in red).

infected by the trojan malware of Figure 6.14B could be used by an attacker to re-establish

a firm foothold within the targeted company since the compromised machines were not all

cleaned. An additional benefit of this VIGOR query and visualization is that it functions

very well as a progress checker after a major security issue, allowing companies to track

their progress as they work to ensure that malware outbreak are fully eradicated from the
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environment. Finally, Figure 6.14A and 6.14B both highlight the way in which the Feature

Embedding is able to cluster related security blindspots in two dimensions for efficient

perusal.

6.5 Discussion and Future Work

When implementing visual graph querying systems, we must grapple with two different

scalability concerns; the visual and the computational. The visual scalability of our system

is primarily limited by the Fusion Graph, which quickly accumulates large numbers of

nodes and edges. By using the Exemplar View, and the Subgraph Embedding, analysts can

quickly filter down the Fusion Graph to manageable sizes. The computational scalability of

our model is most limited by the dimensionality reduction techniques like t-SNE and MDS,

while PCA and kernel-PCA run in under a second. The time to fetch the query results was

often trivial compared to the time needed for the embedding pipeline.

We offer several forms of dimensionality reduction, because dimensionality reduction

is challenging and the best solution often depends on the underlying data. The choice of

which dimensionality reduction method as well as the parameters (ε and nneigh) for OP-

TICS clustering have been left up to the user. Theses choices vary greatly with the underly-

ing characteristics of the network data and suggest that the best options should come from

collaboration between a visualization expert and a domain expert. In our experience, the

nonlinear dimensionality reduction techniques worked much better for clustering on most

graphs; however, the axes of these approaches are much harder to interpret. Both t-SNE

and MDS do a better job at preserving the small distances between the high dimensional

points than conventional PCA and this likely leads to better clustering performance. VIGOR

might benefit from an approach that automatically detects the dimensionality with the best

clustering.

Currently VIGOR applied our system to exact subgraph matches; however, new systems

may also produce approximate subgraph matches. Because the approximate results are not

133



identical in shape and content, the result set becomes much more complex. Additional

visualization techniques are needed to show where and how approximate results do not

match the original query.

6.6 Conclusions

Visualizing graph query results is challenging, requiring effective summarization of a large

number of overlapping subgraph results, each having complex network structure and rich

node features. We presented VIGOR, a novel visual analytics system for exploring and

understanding graph querying results.

VIGOR supports top-down and bottom-up result sensemaking, through its (1) exemplar-

based interaction technique, where an analyst starts with a specific result and relaxes con-

straints to find other similar results or starts with only the structure (i.e., without node

value constraints), and adds constraints to narrow in on specific results; and (2) a novel

feature-aware subgraph result summarization. Through our collaboration with Symantec,

we demonstrated how VIGOR helps discover security blindspots in a cybersecurity dataset

with over 11,000 incidents. We also evaluate VIGOR with a within-subjects study, demon-

strating VIGOR’s ease of use over a leading graph database management system, and its

ability to help analysts understand their results at higher speed and make fewer errors.
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CHAPTER 7

CONCLUSIONS

The era of big data is upon us. Network datasets are growing incredibly fast; yet, making

sense of these networks remains a fundamental challenge. This thesis advocates combin-

ing data mining and visual analytics research to guide researchers and practitioners when

making sense of network data. The ideas, techniques and systems previously discussed

promote exploration of large network data without the need of custom querying languages.

7.1 Contribution Summary

We make three important contributions to network analytics research:

• Thrust I: Adaptive Local Exploration Large graphs pose a significant challenge

to visual analytics approaches, because the large number of nodes and edges in a

graph often visually occlude each other. Even modest sized graphs are hard to utilize

as a starting point for exploration. We propose to use adaptive local exploration to

overcome the challenges of visual scale when facing massive graphs. In Thrust I,

we guide analysts towards nodes and node-neighborhoods with the FACETS system

(covered in Chapter 3); enabling analysts to adaptively explore large million-node

graphs from a local perspective.

• Thrust II: Interactive, Visual Graph Query Construction and Refinement The

foraging from Thrust I: Adaptive Local Graph Exploration, may yield interesting

subgraph patterns. Other similar subgraphs may exist, but may be topologically far

from the currently explored region. Graph querying extends the reach of local explo-

ration once a pattern is known (or even partially known). Constructing and refining

graph queries requires complex querying languages [4, 5, 6, 7]; however, we show
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that queries can instead be formed via a visual, interactive system. Querying is often

an iterative process that can benefit greatly from visual aids [8, 9]. Making such a

system requires both algorithms and visualization working in tandem, as few algo-

rithmic approaches have been designed for both interaction and visualization. This

thrust focuses on algorithms to locate matches and techniques that help analysts con-

struct and refine visual graph queries.

• Thrust III: Visualizing and Exploring Subgraph Matches After constructing a

query an analyst will receive numerous subgraph matches (which we will call re-

sults). While there is significant interest in graph databases and querying techniques,

less research has focused on helping analysts make sense of underlying patterns

within a group of subgraph results. Visualizing graph query results is challenging,

requiring effective summarization of a large number of subgraphs, each having poten-

tially shared node-values, various node features, and flexible structure across queries.

Our system, VIGOR, combines scalable algorithms and interactive visualization tech-

niques to help summarize and compare large numbers of subgraph results (Chapter

6).

7.2 Contributions

Our contributions to data mining, visual analytics, and importantly their intersection fol-

low:

• Algorithms. We introduce FACETS (originally called ADAPTIVENAV) (Chapter 3)

which utilizes fast, dynamic rankings of node neighborhoods to lead analysts to-

wards interesting content. We design and develop a highly scalable algorithm in

MAGE (Chapter 4) for approximate subgraph matching on large networks with node

and edge attributes, wildcards, and multi-attributes. MAGE uses a novel approach

based on the linegraph transformation to embed edge attributes. In VISAGE (Chapter
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5), we create algorithms to support dynamic interactive graph querying in real time

by transforming visual queries into written queries in two querying languages. In

our VIGOR system (Chapter 6), we introduce a novel, feature-aware subgraph result

embedding. This embedding uses semantic node-feature data as well as topological

data when creating a high-dimensional result embedding.

• Systems. We contribute our algorithms to the research community as planned

open-sources projects for approximate subgraph matching (MAGE), adaptive local

exploration (FACETS), interactive visual graph query construction and refinement

(VISAGE), and exploratory visualization of subgraph results (VIGOR).

• New Metrics to Determine User Interest. In FACETS, Chapter 3, we contribute two

new metrics based off of the Jensen-Shannon divergence of feature-neighborhoods:

(1) for subjective user interest modeling and (2) for measuring a nodes rarity and

surprisingness against a network.

• New Adaptive Graph Exploration Paradigm. We contributed a survey that sum-

marizes and discuss many challenges and opportunities for new network analytical

systems (Chapter 2). FACETS is a new step towards an adaptive-exploration paradigm

in visual analytics, exploiting the data generated during interactions between a soft-

ware system and a user to aid the exploration of data.

• New Interactive Graph Query Construction and Refinement via Graph Auto-

complete. VISAGE (Chapter 5) represents a major step towards interactive, visual

graph querying. It provides a new, highly-usable querying paradigm, that uses sim-

ple drag-and-drop interaction to construct complex queries, rather than having to

learn a querying language VISAGE introduces a novel interaction technique called

graph-autocomplete, which guides analysts away from over-specifying their queries.

VISAGE outperforms conventional querying writing and refinement in a laboratory

study for both expert and non-expert subjects.
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• Visual Result Exploration VIGOR introduces a new overview mechanism to visual-

ize large numbers of subgraph results (Chapter 6). It also employs an exemplar filter

to explore the results by filter down to only results with familiar nodes.

• Scalable Interactive Tools. Our interactive systems advance the state of the art, by

facilitating real-time discovery and exploration in graphs with millions of edges (e.g.,

VISAGE and FACETS). Empirical runtime analyses demonstrated FACETS s practical

scalability on large real-world graphs with up to 5 million edges, returning results

in fewer than 1.5 seconds. We demonstrated realtime querying with VISAGE, with

sub-second querying times on a real Rotten Tomatoes movie graph with over 170

thousand relationships.

7.3 Future Research Directions & Transition to Practice

This thesis has taken major steps in improving the analytical capabilities of analysts explor-

ing networks. Through developing our systems and interacting with practitioners, study

participants, and querying experts we have identified three interesting avenues of future

research.

Faceted condition generation for iterative query construction Faceted search (some-

times called faceted navigation or faceted browsing) is a technique for accessing infor-

mation via a faceted classification system in which users explore information by applying

filters (e.g., the filter-bank provided by Amazon or almost any popular online shopping

site). The facets in a faceted classification system are typically features or properties that

enable information to accessed an ordered in a variety of ways rather than a taxonomic or-

der [201]. The information retrieval and human-computer interaction fields have performed

significant research into faceted search systems [201, 202, 203, 204].

These techniques could enable multi-dimensional exploration of both query results as

well as the generation of new query conditions. The interface techniques used in prior
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research could be the foundation for new visual techniques when exploring large numbers

of subgraph matches. Each chosen facet would narrow the result-set and could be simul-

taneously generated into a query condition programmatically. This exploration technique

would likely be very successful from a practical standpoint, as faceted search interfaces in

internet shopping are ubiquitous.

Exploration and comparison of novel subgraph embeddings Recent advances have in-

troduced a large number of new subgraph embeddings. Grover et al. released a tech-

nique called node2vec, a graph embedding that smoothly blends local and global char-

acteristics when creating a continuous, high dimensional representation [107]. Recently

subgraph2vec was also suggested, which learns latent representations of subgraphs in a

continuous, high dimensional space for use in deep-learning applications [108].

In many applications the location of a subgraph in the network plays an important

role. Our feature-aware subgraph embedding only uses 1-hop neighborhood features from

within the underlying network, node2vec and subgraph2vec could be used to provide ad-

ditional context from the network when embedding results. This could be used to provide

summaries that take into account aspects of results’ positions in the broader network.

These methods also promote and enable the use of other data mining techniques to sub-

graphs. This vastly increases the possibilities for prediction, estimation, recommendation,

and even simulation. Additional research is needed to compare and contrast how well these

embeddings work for different tasks (e.g., prediction).

Visual methods for providing complex node and edge conditions A common aspect of

querying is providing conditions on nodes and edges (e.g., a film node with condition:

year = 1988). These conditions allow analysts to quickly filter down results. However, the

types of data associated with nodes and edges can vary greatly (simple integers, text, code,

images etc.), making condition generation a broad and challenging task.
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Many querying languages allow complex expressions including conventional math-

ematical operators, set operations, aggregations, regular expressions and more. These

condition-expressions make querying languages incredibly flexible and expressive. Our

VISAGE work provided a prototype method for visually constructing node conditions over

categorical features, but does not cover the full breadth of data types and expressions.

Previous research has investigated visual approaches to construct and represent only a

few types of condition-expressions. Vi-xfst, a development tool for Xerox finite-state tool

from computational linguistics provided a visual mechanism to create regular expressions

[205]. SWYN, See What You Need, is a system for string-matching regular expressions that

utilizes and suggests visual widgets to construct the expressions [206]. Lixto, visual system

for information extraction (specfically frrom html data to structured xml), has module for

visual construction of basic expressions [207]. These provide the starting point for making

a deeply expressive visual querying language.
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CHAPTER 8

APPENDIX A

8.1 Additional Observations

8.1.1 On Providing Distributions to Novice Participants

Our pilot study of FACETS demonstrated that participants typically did not understand the

feature histogram comparisons in the hidden neighbors menu. In the laboratory study for

VIGOR, participants were more capable of using the distributions to compare groups. We

provide an example of the FACETS layout in Figure 8.1 on the left and an example of

VIGOR’s on the right. This is likely driven by the design choices we followed in each:

Figure 8.1: The distributions used by (left) FACETS and (right) VIGOR.

• Distribution Appearance: FACETS utilized MDL-binning from [162] to bin the

distribution, while VIGOR used kernel density estimation with a Gaussian kernel.

While MDL-binning chooses information-theoretically optimal bin sizes, they often

left participants confused about meaning. Surprisingly little research has investigated

how well participants make sense of different distribution visualizations. In FACETS

case the variable-width bins increased visual complexity.

• Comparison Mechanism: FACETS compared the distributions by showing stacked

MDL-bins, where the number of values in the bin was encoded with its saturation.
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Stacked barcharts are notoriously hard to read [208] and often are used to represent

parts-of-a-whole. When combined with the variation in colors likely further confused

participants.

8.1.2 Expressive Querying and Non-experts Constructing Visual Queries

The breadth of possible queries is immense; however, many of the ideas needed to make

complex queries require expertise in querying. Because expert-only studies are notori-

ously challenging to scale, we chose to test general query construction and refinement with

non-experts. We designed VISAGE with a subset of the expression-rich Cypher querying

language; we only developed visual techniques for expressions from which the returned

results were subgraphs. This design specifically excludes: subgraph set operations, aggre-

gations, custom paths, and potentially others language features. To test these features and

more challenging queries (e.g., computing the transitive closure over a graph) we would

need experts.

When we performed our user study of VISAGE, we picked from a pool of Georgia

Tech students. Before participating in the study they were asked to complete an entrance

questionnaire. We asked about: their familiarity with SQL and DBMSs, their knowledge

of graphs and networks, and their experience with the Cypher querying language. The

distributions of participants self-reported answers are shown in Figure 8.2.

Our goal with this study was to assess the query construction and refinement techniques
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Figure 8.2: Study participant familarity with SQL, graphs, and the Cypher language in
particular. Participants had a wide variety of skill levels with SQL, DBMSs, and graphs.
Most particpants had little-to-no experience with the Cypher querying language.
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from a wide variety of skill levels. Surprisingly we found no statistically significant corre-

lations (we had hypothesized a slight inverse correlation) between reported scores and time

taken per query task. The closest was general familiarity with SQL and DBMSs; however,

the confidence was not sufficient to claim significance.
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